Tannins are polyphenolic compounds produced by plants that are used in the vegetable tanning of leather at an industrial scale. Tannins differ from most other natural phenols since they precipitate proteins and are used in the tanning process to bind to the collagen proteins of the animal skin to make leather more durable and not putrescible. Tannins represent one of the low-biodegradability substances in tannery wastewaters with a highly recalcitrant soluble chemical oxygen demand; moreover, at high concentrations they can inhibit biological treatment. This soluble recalcitrant fraction of tannery effluents is usually removed by means of chemical processes. Therefore, a biological treatment that could remove effectively this fraction would have both environmental and economic advantages. Despite the antimicrobial properties of tannins, there are organisms that are able to grow on them; in fact their biodegradation in the environment is mainly associated with fungi rather than bacteria. Fungi could thus be exploited for the bioremediation of wastewater streams of the tanning industry. However, in environmental biotechnology applications, fungi tend to be outcompeted by bacteria. The application of a fungal-based bioreactor, that has a similar performance under sterile and non-sterile conditions in long-term operations, is still a challenging task. The present thesis was aimed at developing and testing technologies to remove tannins with an engineered ecosystem based on fungi and bacteria for application in typical tannery wastewater treatment trains (non-sterile conditions). Aspergillus tubingensis MUT 990 was selected as a suitable fungal strain. Literature research and previous experiences were used to design and build lab-scale (4 litres volume) and pilot-scale (1.5 m3 volume) reactors. The selected fungal strain was immobilised in polyurethane foam cubes carriers and inoculated in a novel rotating, submerged, packed bed reactor. The first test in bioreactors was carried out to evaluate the effect of rotation and the co-substrate addition on tannin removal. The second test in bioreactors was carried out in two submerged packed bed reactors run in parallel, the first one was fed with a condensed tannin (Quebracho tannin), and the second with hydrolysable tannin (Tara tannin), both were inoculated with Aspergillus tubingensis in attached form. The hydraulic retention time and the concentration of tannins in the medium were varied to maximise the removal capacity and to analyse the substrate inhibition. A stable biofilm was maintained in the first reactor during the 180 days of operation. On the other hand, in the second reactor there was a biomass detachment during the start-up and then grown as a suspended culture throughout the operational period (226 days). Soluble chemical oxygen demand removal up to 53% and 90% were achieved in the first and second bioreactor, respectively, without the addition of co-substrates. The microbial communities of the reactors, made up of fungi and bacteria, were characterised with a metagenomic analysis. In addition, an innovative technique, the heterogeneous respirometry, was applied to assess the biological activity of immobilised cells (biofilm). The data obtained were used to develop a mathematical model and to perform a kinetic and stoichiometric characterisation of the biomass. Since fungal biomass is poorly characterised with modelling and respirometry, dedicated experiments were set-up along with a respirometric procedure. The lab-scale results were used to design a pilot-scale reactor. Finally, after a start-up phase the pilot-scale reactor was fed with real tannin-rich wastewater collected from tanneries. At the end of the experimentation the biofilm was stable and an encouraging performance had been achieved. We believe the results obtained represent the first step for a future real-scale application to reach an efficient biological removal of tannins from tannery wastewater.

USE OF FUNGI AND BACTERIA FOR THE REMOVAL OF RECALCITRANT COMPOUNDS FROM TANNERY WASTEWATER / francesco spennati. - (2018).

USE OF FUNGI AND BACTERIA FOR THE REMOVAL OF RECALCITRANT COMPOUNDS FROM TANNERY WASTEWATER

francesco spennati
2018

Abstract

Tannins are polyphenolic compounds produced by plants that are used in the vegetable tanning of leather at an industrial scale. Tannins differ from most other natural phenols since they precipitate proteins and are used in the tanning process to bind to the collagen proteins of the animal skin to make leather more durable and not putrescible. Tannins represent one of the low-biodegradability substances in tannery wastewaters with a highly recalcitrant soluble chemical oxygen demand; moreover, at high concentrations they can inhibit biological treatment. This soluble recalcitrant fraction of tannery effluents is usually removed by means of chemical processes. Therefore, a biological treatment that could remove effectively this fraction would have both environmental and economic advantages. Despite the antimicrobial properties of tannins, there are organisms that are able to grow on them; in fact their biodegradation in the environment is mainly associated with fungi rather than bacteria. Fungi could thus be exploited for the bioremediation of wastewater streams of the tanning industry. However, in environmental biotechnology applications, fungi tend to be outcompeted by bacteria. The application of a fungal-based bioreactor, that has a similar performance under sterile and non-sterile conditions in long-term operations, is still a challenging task. The present thesis was aimed at developing and testing technologies to remove tannins with an engineered ecosystem based on fungi and bacteria for application in typical tannery wastewater treatment trains (non-sterile conditions). Aspergillus tubingensis MUT 990 was selected as a suitable fungal strain. Literature research and previous experiences were used to design and build lab-scale (4 litres volume) and pilot-scale (1.5 m3 volume) reactors. The selected fungal strain was immobilised in polyurethane foam cubes carriers and inoculated in a novel rotating, submerged, packed bed reactor. The first test in bioreactors was carried out to evaluate the effect of rotation and the co-substrate addition on tannin removal. The second test in bioreactors was carried out in two submerged packed bed reactors run in parallel, the first one was fed with a condensed tannin (Quebracho tannin), and the second with hydrolysable tannin (Tara tannin), both were inoculated with Aspergillus tubingensis in attached form. The hydraulic retention time and the concentration of tannins in the medium were varied to maximise the removal capacity and to analyse the substrate inhibition. A stable biofilm was maintained in the first reactor during the 180 days of operation. On the other hand, in the second reactor there was a biomass detachment during the start-up and then grown as a suspended culture throughout the operational period (226 days). Soluble chemical oxygen demand removal up to 53% and 90% were achieved in the first and second bioreactor, respectively, without the addition of co-substrates. The microbial communities of the reactors, made up of fungi and bacteria, were characterised with a metagenomic analysis. In addition, an innovative technique, the heterogeneous respirometry, was applied to assess the biological activity of immobilised cells (biofilm). The data obtained were used to develop a mathematical model and to perform a kinetic and stoichiometric characterisation of the biomass. Since fungal biomass is poorly characterised with modelling and respirometry, dedicated experiments were set-up along with a respirometric procedure. The lab-scale results were used to design a pilot-scale reactor. Finally, after a start-up phase the pilot-scale reactor was fed with real tannin-rich wastewater collected from tanneries. At the end of the experimentation the biofilm was stable and an encouraging performance had been achieved. We believe the results obtained represent the first step for a future real-scale application to reach an efficient biological removal of tannins from tannery wastewater.
2018
Giulio Munz, David Gabriel
ITALIA
francesco spennati
File in questo prodotto:
File Dimensione Formato  
Spennati_PhD_Thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 13.28 MB
Formato Adobe PDF
13.28 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1126916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact