A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C-O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8a-o) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4-17.6 nM.
Iodine-mediated one-pot intramolecular decarboxylation domino reaction for accessing functionalised 2-(1,3,4-oxadiazol-2-yl)anilines with carbonic anhydrase inhibitory action / Angapelly, Srinivas; Ramya, P. V. Sri; Sodhi, Rohini; Angeli, Andrea; Rangan, Krishnan; Nagesh, Narayana; Supuran, Claudiu T.; Arifuddin, Mohammed*. - In: JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY. - ISSN 1475-6366. - STAMPA. - 33:(2018), pp. 615-628. [10.1080/14756366.2018.1443447]
Iodine-mediated one-pot intramolecular decarboxylation domino reaction for accessing functionalised 2-(1,3,4-oxadiazol-2-yl)anilines with carbonic anhydrase inhibitory action
Angeli, Andrea;Supuran, Claudiu T.
;
2018
Abstract
A practical and transition metal-free one-pot domino synthesis of diversified (1,3,4-oxadiazol-2-yl)anilines has been developed employing isatins and hydrazides as the starting materials, in the presence of molecular iodine. The prominent feature of this domino process involves consecutive condensation, hydrolytic ring cleavage, and an intramolecular decarboxylation, in a one-pot process that leads to the oxidative formation of a C-O bond. Fluorescence properties of some of the representative molecules obtained in this way were studied. The synthesised 2-(1,3,4-oxadiazolo-2-yl)aniline-benzene sulphonamides (8a-o) were screened for their carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity. Most of the compounds exhibited low micromolar to nanomolar activity against human (h) isoforms hCA I, hCA II, hCA IV, and XII, with some compounds displaying selective CA inhibitory activity towards hCA II with KIs of 6.4-17.6 nM.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.