In this paper we give sufficient conditions for a Pontryagin extremal trajectory, consisting of two bang arcs followed by a partially or totally singular one, to be a strong local minimizer for a Mayer problem. The problem is defined on $mathbb{R}^n$ and the end-points constraints are of fixed-free type. We use a Hamiltonian approach and its connection with the second order conditions in the form of a linear quadratic accessory problem. An example is proposed. All the results are coordinate free so they also hold on a manifold.
Strong local optimality for a bang-bang-singular extremal: the fixed-free case / Laura Poggiolini; Gianna Stefani. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 1095-7138. - STAMPA. - 56:(2018), pp. 2274-2294. [10.1137/17M1140248]
Strong local optimality for a bang-bang-singular extremal: the fixed-free case
Laura Poggiolini
;Gianna Stefani
2018
Abstract
In this paper we give sufficient conditions for a Pontryagin extremal trajectory, consisting of two bang arcs followed by a partially or totally singular one, to be a strong local minimizer for a Mayer problem. The problem is defined on $mathbb{R}^n$ and the end-points constraints are of fixed-free type. We use a Hamiltonian approach and its connection with the second order conditions in the form of a linear quadratic accessory problem. An example is proposed. All the results are coordinate free so they also hold on a manifold.File | Dimensione | Formato | |
---|---|---|---|
2018-SICON-bbs-M114024.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
450.41 kB
Formato
Adobe PDF
|
450.41 kB | Adobe PDF | Richiedi una copia |
bbsfissolibero-180308.pdf
accesso aperto
Descrizione: Versione accettata
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
374.42 kB
Formato
Adobe PDF
|
374.42 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.