We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.

Discovery of a Kiloparsec Extended Hard X-Ray Continuum and Fe-Kα from the Compton Thick AGN ESO 428-G014 / Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng. - In: THE ASTROPHYSICAL JOURNAL LETTERS. - ISSN 2041-8205. - ELETTRONICO. - 842:(2017), pp. 4-9. [10.3847/2041-8213/aa7551]

Discovery of a Kiloparsec Extended Hard X-Ray Continuum and Fe-Kα from the Compton Thick AGN ESO 428-G014

Risaliti, G.;
2017

Abstract

We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
2017
842
4
9
Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1134143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 47
social impact