In this paper we study the efficient solution of the well-known Korteweg–de Vries equation, equipped with periodic boundary conditions. A Fourier-Galerkin space semi-discretization at first provides a large-size Hamiltonian ODE prob- lem, whose solution in time is then carried out by means of energy-conserving methods in the HBVM class (Hamiltonian Boundary Value Methods). The effi- cient implementation of the methods for the resulting problem is also considered and several numerical examples are reported.

Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg–de Vries equation / Luigi Brugnano, Gianmarco Gurioli, Yajuan Sun. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 1879-1778. - STAMPA. - 351:(2019), pp. 117-135. [10.1016/j.cam.2018.10.014]

Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg–de Vries equation

Luigi Brugnano;GURIOLI, GIANMARCO;
2019

Abstract

In this paper we study the efficient solution of the well-known Korteweg–de Vries equation, equipped with periodic boundary conditions. A Fourier-Galerkin space semi-discretization at first provides a large-size Hamiltonian ODE prob- lem, whose solution in time is then carried out by means of energy-conserving methods in the HBVM class (Hamiltonian Boundary Value Methods). The effi- cient implementation of the methods for the resulting problem is also considered and several numerical examples are reported.
2019
351
117
135
Luigi Brugnano, Gianmarco Gurioli, Yajuan Sun
File in questo prodotto:
File Dimensione Formato  
KdV2018_1.pdf

accesso aperto

Descrizione: versione finale accettata per la pubblicazione
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 726.86 kB
Formato Adobe PDF
726.86 kB Adobe PDF
jcam 351 (2019) 117-135.pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1137213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact