This paper introduces a novel class of models for binary data, which we call log-mean linear models. They are specified by linear constraints on the log-mean linear parameter, defined as a log-linear expansion of the mean parameter of the multivariate Bernoulli distribution. We show that marginal independence relationships between variables can be specified by setting certain log-mean linear interactions to zero and,more specifically, that graphical models of marginal independence are log-mean linear models. Our approach overcomes some drawbacks of the existing parameterizations of graphical models of marginal independence.

Log-mean linear models for binary data / Roverato A., Lupparelli M., La Rocca L.. - In: BIOMETRIKA. - ISSN 0006-3444. - STAMPA. - 100:(2013), pp. 485-494.

Log-mean linear models for binary data

Lupparelli M.;
2013

Abstract

This paper introduces a novel class of models for binary data, which we call log-mean linear models. They are specified by linear constraints on the log-mean linear parameter, defined as a log-linear expansion of the mean parameter of the multivariate Bernoulli distribution. We show that marginal independence relationships between variables can be specified by setting certain log-mean linear interactions to zero and,more specifically, that graphical models of marginal independence are log-mean linear models. Our approach overcomes some drawbacks of the existing parameterizations of graphical models of marginal independence.
2013
100
485
494
Roverato A., Lupparelli M., La Rocca L.
File in questo prodotto:
File Dimensione Formato  
1109.6239.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 312.86 kB
Formato Adobe PDF
312.86 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1138479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact