This paper collects results about Riordan arrays in the framework of matrix functions; actually, the following methodology applies to any square matrix m times m with exactly one eigenvalue λ of algebraic multiplicity m. Generalized Lagrange bases are used to construct Hermite polynomials that interpolate a family of functions; moreover, we show a parallel application of such functions via Jordan canonical forms and case studies are given.

Functions and Jordan canonical forms of Riordan matrices / D. Merlini, M. Nocentini. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - STAMPA. - 565:(2019), pp. 177-207. [10.1016/j.laa.2018.12.011]

Functions and Jordan canonical forms of Riordan matrices

D. Merlini;M. Nocentini
2019

Abstract

This paper collects results about Riordan arrays in the framework of matrix functions; actually, the following methodology applies to any square matrix m times m with exactly one eigenvalue λ of algebraic multiplicity m. Generalized Lagrange bases are used to construct Hermite polynomials that interpolate a family of functions; moreover, we show a parallel application of such functions via Jordan canonical forms and case studies are given.
2019
565
177
207
D. Merlini, M. Nocentini
File in questo prodotto:
File Dimensione Formato  
r42.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 402.15 kB
Formato Adobe PDF
402.15 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1147224
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact