This paper collects results about Riordan arrays in the framework of matrix functions; actually, the following methodology applies to any square matrix m times m with exactly one eigenvalue λ of algebraic multiplicity m. Generalized Lagrange bases are used to construct Hermite polynomials that interpolate a family of functions; moreover, we show a parallel application of such functions via Jordan canonical forms and case studies are given.
Functions and Jordan canonical forms of Riordan matrices / D. Merlini, M. Nocentini. - In: LINEAR ALGEBRA AND ITS APPLICATIONS. - ISSN 0024-3795. - STAMPA. - 565:(2019), pp. 177-207. [10.1016/j.laa.2018.12.011]
Functions and Jordan canonical forms of Riordan matrices
D. Merlini;M. Nocentini
2019
Abstract
This paper collects results about Riordan arrays in the framework of matrix functions; actually, the following methodology applies to any square matrix m times m with exactly one eigenvalue λ of algebraic multiplicity m. Generalized Lagrange bases are used to construct Hermite polynomials that interpolate a family of functions; moreover, we show a parallel application of such functions via Jordan canonical forms and case studies are given.File | Dimensione | Formato | |
---|---|---|---|
r42.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
402.15 kB
Formato
Adobe PDF
|
402.15 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.