Let ΓR be the class of plane, oriented, rectifiable curves γ, such that, for almost every x∈γ, the part of γ preceding x is outside the open disk of radius R, centered in x+Rtx, where tx is the unit tangent vector at x. In Longinetti et al. [Plane R-curves and their steepest descent properties I Appl Anal. DOI: 10.1080/00036811.2018.1466278], the present authors have obtained bounds for the length and the detour for C1 regular curves in ΓR. These bounds are proved here for all curves in ΓR.
Plane R-curves II / Longinetti, M.*; Manselli, P.; Venturi, A.. - In: APPLICABLE ANALYSIS. - ISSN 0003-6811. - ELETTRONICO. - (2021), pp. 1-15. [10.1080/00036811.2019.1600677]
Plane R-curves II
Longinetti, M.
;Manselli, P.;Venturi, A.
2021
Abstract
Let ΓR be the class of plane, oriented, rectifiable curves γ, such that, for almost every x∈γ, the part of γ preceding x is outside the open disk of radius R, centered in x+Rtx, where tx is the unit tangent vector at x. In Longinetti et al. [Plane R-curves and their steepest descent properties I Appl Anal. DOI: 10.1080/00036811.2018.1466278], the present authors have obtained bounds for the length and the detour for C1 regular curves in ΓR. These bounds are proved here for all curves in ΓR.File | Dimensione | Formato | |
---|---|---|---|
Plane R curves II.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Richiedi una copia |
gapaRsdc-II-2019-02-22.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
376.63 kB
Formato
Adobe PDF
|
376.63 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.