By means of Hamiltonian methods we give sufficient conditions for the strong local optimality of a Pontryagin extremal for a Mayer problem where both the end points of admissible trajectories are constrained to smooth manifolds of the state space. The extremal is given by the concatenation of two bang arcs and a partially singular one. Our sufficient conditions amount to regularity conditions on the extremal and the coercivity of a suitable quadratic form.

Constrained bang-bang-singular extremals / Laura Poggiolini; Gianna Stefani. - ELETTRONICO. - 2019(2019), pp. 0-0. ((Intervento presentato al convegno 58th Conference on Decision and Control tenutosi a Nice, France nel December 11th-13th 2019.

Constrained bang-bang-singular extremals

Laura Poggiolini
;
Gianna Stefani
2019

Abstract

By means of Hamiltonian methods we give sufficient conditions for the strong local optimality of a Pontryagin extremal for a Mayer problem where both the end points of admissible trajectories are constrained to smooth manifolds of the state space. The extremal is given by the concatenation of two bang arcs and a partially singular one. Our sufficient conditions amount to regularity conditions on the extremal and the coercivity of a suitable quadratic form.
CDC 2019
58th Conference on Decision and Control
Nice, France
December 11th-13th 2019
Laura Poggiolini; Gianna Stefani
File in questo prodotto:
File Dimensione Formato  
2019_CDC_Nice.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 307.6 kB
Formato Adobe PDF
307.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2019-08-27-upload.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: DRM non definito
Dimensione 270.74 kB
Formato Adobe PDF
270.74 kB Adobe PDF Visualizza/Apri

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1168828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact