Seismic assessment of existing masonry structures requires a numerical model able to both reproduce their nonlinear behaviour and account for the different sources of uncertainties; the latter have to be dealt with since the unavoidable lack of knowledge on the input parameters (material properties, geometry, boundary conditions, etc.) has a relevant effect on the reliability of the seismic response provided by the numerical approaches. The steadily increasing necessity of combining different sources of information/knowledge makes the Bayesian approach an appealing technique, not yet fully investigated for historic masonry constructions. In fact, while the Bayesian paradigm is currently employed to solve inverse problems in several sectors of the structural engineering domain, only a few studies pay attention to its effectiveness for parameter identification on historic masonry structures. This study combines a Bayesian framework with probabilistic structural analyses: starting from the Bayesian finite element model updating by using experimental data it provides the definition of robust seismic fragility curves for non-isolated masonry towers. A comparison between this method and the standard deterministic approach illustrates its benefits. This article is part of the theme issue 'Environmental loading of heritage structures'.

A Bayesian model updating framework for robust seismic fragility analysis of non-isolated historic masonry towers / Gianni Bartoli; Michele Betti; Antonino Maria Marra; Silvia Monchetti. - In: PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A: MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES. - ISSN 1364-503X. - STAMPA. - 377:(2019), pp. 1-21. [10.1098/rsta.2019.0024]

A Bayesian model updating framework for robust seismic fragility analysis of non-isolated historic masonry towers

Gianni Bartoli;Michele Betti
;
Antonino Maria Marra;Silvia Monchetti
2019

Abstract

Seismic assessment of existing masonry structures requires a numerical model able to both reproduce their nonlinear behaviour and account for the different sources of uncertainties; the latter have to be dealt with since the unavoidable lack of knowledge on the input parameters (material properties, geometry, boundary conditions, etc.) has a relevant effect on the reliability of the seismic response provided by the numerical approaches. The steadily increasing necessity of combining different sources of information/knowledge makes the Bayesian approach an appealing technique, not yet fully investigated for historic masonry constructions. In fact, while the Bayesian paradigm is currently employed to solve inverse problems in several sectors of the structural engineering domain, only a few studies pay attention to its effectiveness for parameter identification on historic masonry structures. This study combines a Bayesian framework with probabilistic structural analyses: starting from the Bayesian finite element model updating by using experimental data it provides the definition of robust seismic fragility curves for non-isolated masonry towers. A comparison between this method and the standard deterministic approach illustrates its benefits. This article is part of the theme issue 'Environmental loading of heritage structures'.
2019
377
1
21
Gianni Bartoli; Michele Betti; Antonino Maria Marra; Silvia Monchetti
File in questo prodotto:
File Dimensione Formato  
rsta.2019.0024.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1170137
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
social impact