Given a function f defined on the unit sphere, the L p Minkowski problem asks for a convex body K whose Lp surface area measure has density f with respect to the standard (n −1)-Hausdorff measure on the unit sphere. In this paper we deal with the generalization of this problem which arises in the Orlicz-Brunn-Minkowski theory when an Orlicz function substitutes the Lp norm and p is in the range (−n, 0). This problem is equivalent to solve a Monge-Ampere equation on the unit sphere, where the unknown is the support function of the convex body K.

The Orlicz version of the Lp Minkowski problem for −n < p < 0 / Bianchi G.; Boroczky K.J.; Colesanti A.. - In: ADVANCES IN APPLIED MATHEMATICS. - ISSN 0196-8858. - ELETTRONICO. - 111:(2019), pp. 0-0. [10.1016/j.aam.2019.101937]

The Orlicz version of the Lp Minkowski problem for −n < p < 0

Bianchi G.;Colesanti A.
2019

Abstract

Given a function f defined on the unit sphere, the L p Minkowski problem asks for a convex body K whose Lp surface area measure has density f with respect to the standard (n −1)-Hausdorff measure on the unit sphere. In this paper we deal with the generalization of this problem which arises in the Orlicz-Brunn-Minkowski theory when an Orlicz function substitutes the Lp norm and p is in the range (−n, 0). This problem is equivalent to solve a Monge-Ampere equation on the unit sphere, where the unknown is the support function of the convex body K.
2019
111
0
0
Bianchi G.; Boroczky K.J.; Colesanti A.
File in questo prodotto:
File Dimensione Formato  
lp-negative-Orlicz-versione_su_rivista_AdvApplMath.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 531.72 kB
Formato Adobe PDF
531.72 kB Adobe PDF
lp-negative-Orlicz-5b_revised_after_acceptance_AAM.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 419.34 kB
Formato Adobe PDF
419.34 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1172686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact