We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liéenard system of. We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.
Chaotic Dynamics in a periodically perturbed Liénard System / Gabriele Villari, Duccio Papini, Fabio Zanolin. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - STAMPA. - 32:(2019), pp. 595-614.
Chaotic Dynamics in a periodically perturbed Liénard System
Gabriele Villari;
2019
Abstract
We prove the existence of infinitely many periodic solutions, as well as the presence of chaotic dynamics, for a periodically perturbed planar Liéenard system of. We consider the case in which the perturbing term is not necessarily small. Such a result is achieved by a topological method, that is by proving the presence of a horseshoe structure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PVZ Chaotic dynamics in a periodically perturbed Liénard system.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
447.84 kB
Formato
Adobe PDF
|
447.84 kB | Adobe PDF | Richiedi una copia |
PaViZa.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
494.94 kB
Formato
Adobe PDF
|
494.94 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.