Given a finite groupG, let cd(G)denote the set of degrees of the irreducible complexcharacters ofG.Thecharacter degree graphofGis defined as the simple undirected graphwhose vertices are the prime divisors of the numbers in cd(G), two distinct verticespandqbeing adjacent if and only ifpqdivides some number in cd(G). In this paper, we consider thecomplement of the character degree graph, and we characterize the finite groups for whichthis complement graph is not bipartite. This extends the analysis of Akhlaghi et al. (Proc AmMath Soc 146:1505–1513,2018), where the solvable case was treated

On the character degree graph of finite groups / Akhlaghi Z.; Casolo C.; Dolfi S.; Pacifici E.; Sanus L.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 198:(2019), pp. 1595-1614. [10.1007/s10231-019-00833-0]

On the character degree graph of finite groups

Casolo C.;Dolfi S.;Pacifici E.
;
2019

Abstract

Given a finite groupG, let cd(G)denote the set of degrees of the irreducible complexcharacters ofG.Thecharacter degree graphofGis defined as the simple undirected graphwhose vertices are the prime divisors of the numbers in cd(G), two distinct verticespandqbeing adjacent if and only ifpqdivides some number in cd(G). In this paper, we consider thecomplement of the character degree graph, and we characterize the finite groups for whichthis complement graph is not bipartite. This extends the analysis of Akhlaghi et al. (Proc AmMath Soc 146:1505–1513,2018), where the solvable case was treated
2019
198
1595
1614
Goal 4: Quality education
Akhlaghi Z.; Casolo C.; Dolfi S.; Pacifici E.; Sanus L.
File in questo prodotto:
File Dimensione Formato  
OnTheCharacterDegreeGraphOfFiniteGroups.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 410.29 kB
Formato Adobe PDF
410.29 kB Adobe PDF   Richiedi una copia
OnTheCharacterDegreeGraphOfFiniteGroupsArxiv.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 291.86 kB
Formato Adobe PDF
291.86 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1175416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact