In this work we propose a general framework that provides a unified convergence analysis for nonmonotone decomposition algorithms. The main motivation to embed nonmonotone strategies within a decomposition approach lies in the fact that enforcing the reduction of the objective function could be unnecessarily expensive, taking into account that groups of variables are individually updated. We define different search directions and line searches satisfying the conditions required by the presented nonmonotone decomposition framework to obtain global convergence. We employ a set of large-scale network equilibrium problems as a computational example to show the advantages of a nonmonotone algorithm over its monotone counterpart. In conclusion, a new smart implementation for decomposition methods has been derived to solve numerical issues on large-scale partially separable functions.

A unified convergence framework for nonmonotone inexact decomposition methods / Galli, Leonardo; Galligari, Alessandro; Sciandrone, Marco. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 0926-6003. - STAMPA. - 75:(2019), pp. 113-144. [10.1007/s10589-019-00150-5]

A unified convergence framework for nonmonotone inexact decomposition methods

Galli, Leonardo
;
Galligari, Alessandro;Sciandrone, Marco
2019

Abstract

In this work we propose a general framework that provides a unified convergence analysis for nonmonotone decomposition algorithms. The main motivation to embed nonmonotone strategies within a decomposition approach lies in the fact that enforcing the reduction of the objective function could be unnecessarily expensive, taking into account that groups of variables are individually updated. We define different search directions and line searches satisfying the conditions required by the presented nonmonotone decomposition framework to obtain global convergence. We employ a set of large-scale network equilibrium problems as a computational example to show the advantages of a nonmonotone algorithm over its monotone counterpart. In conclusion, a new smart implementation for decomposition methods has been derived to solve numerical issues on large-scale partially separable functions.
2019
75
113
144
Galli, Leonardo; Galligari, Alessandro; Sciandrone, Marco
File in questo prodotto:
File Dimensione Formato  
Galli2019_Article_AUnifiedConvergenceFrameworkFo.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 662.41 kB
Formato Adobe PDF
662.41 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1176635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact