I sistemi di imaging ad ultrasuoni (US), sebbene siano stati oggetto di intense indagini da parte di molti gruppi di ricerca in tutto il mondo, non hanno ancora raggiunto la piena maturità. Le sonde ad ultrasuoni, in particolare, hanno ampi margini di miglioramento, non solo in termini di materiali e configurazione degli elementi, ma anche di modalità di eccitazione. Il mio lavoro di dottorato è stato impegnato nello sviluppo di circuiti elettronici e metodi per l'imaging ad ultrasuoni basati su sonde innovative. In primo luogo, ho sviluppato i circuiti elettronici necessari per rendere compatibile un sistema di ricerca a ultrasuoni per scopi di ricerca (ULA-OP 256) con le sonde CMUT. La tecnologia CMUT è sempre più utilizzata perché offre ampia banda, elevata sensibilità e grande flessibilità nella progettazione della geometria degli elementi ma, a differenza della tecnologia piezoelettrica, necessita di alte tensioni di polarizzazione (dell’ordine delle centinaia di Volt). Poiché ULA-OP 256 è stato originariamente progettato per funzionare solo con sonde piezoelettriche, ho contribuito allo sviluppo di circuiti in grado di adattare questo scanner aperto per lavorare anche con sonde CMUT. Inoltre, in collaborazione con ST Microelectronics, ho sviluppato una scheda elettronica che permette di testare un nuovo amplificatore di potenza a nove livelli per la trasmissione di segnali sia alle sonde piezoelettriche che alle sonde CMUT. La seconda parte del mio lavoro è stata dedicata allo studio del possibile utilizzo di sonde ad array "sparse" per ecografie 3D Doppler e ad alto frame rate. Le sonde sparse sono array 2D in cui un numero limitato di elementi, paragonabile al numero di canali presenti nella maggior parte degli scanner ad ultrasuoni, è distribuito secondo specifiche geometrie, progettate per ottimizzare il fascio acustico in trasmissione e ricezione. CMUT è la tecnologia ideale per l'implementazione di sonde sparse array, in quanto garantisce la massima flessibilità nella distribuzione degli elementi in posizioni arbitrarie. Il mio lavoro con gli Sparse Array ha incluso prima di tutto lo studio di possibili limitazioni legate al loro utilizzo quando sono usati per trasmettere onde divergenti (DWs). Si tratta di onde non focalizzate che permettono di aumentare notevolmente il frame rate nell'imaging volumetrico (3D). In questa attività, ho fatto simulazioni ed esperimenti nel laboratorio CREATIS (Lione) per confrontare le prestazioni ottenibili in termini di contrasto e risoluzione quando si utilizzano diverse configurazioni di DW e di elementi sparsi. Infine, una parte consistente del mio dottorato di ricerca è stata focalizzata sulla valutazione dell'uso di array sparse in applicazioni Doppler spettrali. L'intenzione di questo studio era di valutare in che misura la dispersione degli elementi sulla superficie della sonda può influenzare le prestazioni del Doppler spettrale. Per raggiungere questo obiettivo, l'uso di un array 2D a 1024 elementi a griglia completa è stato confrontato con l'uso di array sparse ottenuti selezionando opportunamente 256 elementi sulla stessa matrice completa. Gli esperimenti sono stati sviluppati sia su un disco di agar rotante (dove sono raggiungibili alti SNR) che su un phantom di flusso (per testare una condizione più realistica) al CREATIS. I risultati di questo lavoro confermano quantitativamente l'idoneità degli array sparse per misure di velocità Doppler spettrali, a condizione che la perdita di rapporto segnale/rumore dovuto all'utilizzo di meno elementi attivi sia adeguatamente compensata. Ultrasound (US) imaging systems, although intensively investigated by many research groups worldwide, have not achieved full maturity yet. US probes, in particular, have wide margins of improvement, not only in terms of materials and elements configuration but also of excitation modalities. This PhD work has been committed to the development of electronic circuits and methods for US imaging based on innovative ultrasound probes. First, I’ve developed the electronic circuits necessary to make an open ultrasound research system (ULA-OP 256) compatible with CMUT probes. CMUT technology is increasingly used because it offers wide band, high sensitivity and great flexibility in the design of elements geometry but, differently from the piezoelectric technology, needs high polarization and peak-to-peak voltages (hundreds of Volt). Since ULA-OP 256 was originally designed to work only with piezoelectric probes, I contributed to the development of circuits capable of adapting this open scanner to work also with CMUT array probes. Furthermore, within a collaboration with ST Microelectronics, I’ve developed an electronic board that allows to test a new 9-level power amplifier for the transmission of signals to both piezoelectric and CMUT probes. The second part of my work has been dedicated to the investigation of possible use of “sparse” array probes for 3D high-frame rate and Doppler imaging. Sparse probes are 2D arrays in which a limited number of elements, comparable to the number of channels present in most US scanners, is distributed according to specific geometries, designed to optimize the transmit/receive acoustic beam. CMUT is the ideal technology for implementing sparse array probes, since it guarantees maximum flexibility in distributing the elements into arbitrary positions. My work with sparse arrays has first included the investigation of possible limitations related to their use when they are committed to transmit Diverging Waves (DWs). These are unfocused waves that may notably increase the frame rate in volumetric (3D) imaging. In this activity, I’ve done simulations and experiments at CREATIS (Lyon) to compare the achievable performance in terms of contrast and resolution when different DWs and sparse elements configurations are used. Finally, a consistent part of my PhD has been focused on the evaluation of the use of sparse arrays in spectral Doppler applications. The intention of this study was to evaluate at which extent the sparsification of probe elements may affect the spectral Doppler performance. To achieve this goal, the use of a full-gridded 1024-element 2D array was compared with the use of a sparse arrays obtained by properly selecting 256 elements out of the same full array. The experiments were developed on both a rotating agar disc (where high SNR are achievable) and on a flow phantom (to test a more realistic condition) at CREATIS. The results of this work quantitatively confirm the suitability of sparse arrays for spectral Doppler velocity measurements, provided the poor signal-to-noise ratio due to the use of few active elements is properly compensated.

Development of methods and electronic circuits for ultrasound imaging based on innovative probes / Paolo Mattesini. - (2020).

Development of methods and electronic circuits for ultrasound imaging based on innovative probes

Paolo Mattesini
2020

Abstract

I sistemi di imaging ad ultrasuoni (US), sebbene siano stati oggetto di intense indagini da parte di molti gruppi di ricerca in tutto il mondo, non hanno ancora raggiunto la piena maturità. Le sonde ad ultrasuoni, in particolare, hanno ampi margini di miglioramento, non solo in termini di materiali e configurazione degli elementi, ma anche di modalità di eccitazione. Il mio lavoro di dottorato è stato impegnato nello sviluppo di circuiti elettronici e metodi per l'imaging ad ultrasuoni basati su sonde innovative. In primo luogo, ho sviluppato i circuiti elettronici necessari per rendere compatibile un sistema di ricerca a ultrasuoni per scopi di ricerca (ULA-OP 256) con le sonde CMUT. La tecnologia CMUT è sempre più utilizzata perché offre ampia banda, elevata sensibilità e grande flessibilità nella progettazione della geometria degli elementi ma, a differenza della tecnologia piezoelettrica, necessita di alte tensioni di polarizzazione (dell’ordine delle centinaia di Volt). Poiché ULA-OP 256 è stato originariamente progettato per funzionare solo con sonde piezoelettriche, ho contribuito allo sviluppo di circuiti in grado di adattare questo scanner aperto per lavorare anche con sonde CMUT. Inoltre, in collaborazione con ST Microelectronics, ho sviluppato una scheda elettronica che permette di testare un nuovo amplificatore di potenza a nove livelli per la trasmissione di segnali sia alle sonde piezoelettriche che alle sonde CMUT. La seconda parte del mio lavoro è stata dedicata allo studio del possibile utilizzo di sonde ad array "sparse" per ecografie 3D Doppler e ad alto frame rate. Le sonde sparse sono array 2D in cui un numero limitato di elementi, paragonabile al numero di canali presenti nella maggior parte degli scanner ad ultrasuoni, è distribuito secondo specifiche geometrie, progettate per ottimizzare il fascio acustico in trasmissione e ricezione. CMUT è la tecnologia ideale per l'implementazione di sonde sparse array, in quanto garantisce la massima flessibilità nella distribuzione degli elementi in posizioni arbitrarie. Il mio lavoro con gli Sparse Array ha incluso prima di tutto lo studio di possibili limitazioni legate al loro utilizzo quando sono usati per trasmettere onde divergenti (DWs). Si tratta di onde non focalizzate che permettono di aumentare notevolmente il frame rate nell'imaging volumetrico (3D). In questa attività, ho fatto simulazioni ed esperimenti nel laboratorio CREATIS (Lione) per confrontare le prestazioni ottenibili in termini di contrasto e risoluzione quando si utilizzano diverse configurazioni di DW e di elementi sparsi. Infine, una parte consistente del mio dottorato di ricerca è stata focalizzata sulla valutazione dell'uso di array sparse in applicazioni Doppler spettrali. L'intenzione di questo studio era di valutare in che misura la dispersione degli elementi sulla superficie della sonda può influenzare le prestazioni del Doppler spettrale. Per raggiungere questo obiettivo, l'uso di un array 2D a 1024 elementi a griglia completa è stato confrontato con l'uso di array sparse ottenuti selezionando opportunamente 256 elementi sulla stessa matrice completa. Gli esperimenti sono stati sviluppati sia su un disco di agar rotante (dove sono raggiungibili alti SNR) che su un phantom di flusso (per testare una condizione più realistica) al CREATIS. I risultati di questo lavoro confermano quantitativamente l'idoneità degli array sparse per misure di velocità Doppler spettrali, a condizione che la perdita di rapporto segnale/rumore dovuto all'utilizzo di meno elementi attivi sia adeguatamente compensata. Ultrasound (US) imaging systems, although intensively investigated by many research groups worldwide, have not achieved full maturity yet. US probes, in particular, have wide margins of improvement, not only in terms of materials and elements configuration but also of excitation modalities. This PhD work has been committed to the development of electronic circuits and methods for US imaging based on innovative ultrasound probes. First, I’ve developed the electronic circuits necessary to make an open ultrasound research system (ULA-OP 256) compatible with CMUT probes. CMUT technology is increasingly used because it offers wide band, high sensitivity and great flexibility in the design of elements geometry but, differently from the piezoelectric technology, needs high polarization and peak-to-peak voltages (hundreds of Volt). Since ULA-OP 256 was originally designed to work only with piezoelectric probes, I contributed to the development of circuits capable of adapting this open scanner to work also with CMUT array probes. Furthermore, within a collaboration with ST Microelectronics, I’ve developed an electronic board that allows to test a new 9-level power amplifier for the transmission of signals to both piezoelectric and CMUT probes. The second part of my work has been dedicated to the investigation of possible use of “sparse” array probes for 3D high-frame rate and Doppler imaging. Sparse probes are 2D arrays in which a limited number of elements, comparable to the number of channels present in most US scanners, is distributed according to specific geometries, designed to optimize the transmit/receive acoustic beam. CMUT is the ideal technology for implementing sparse array probes, since it guarantees maximum flexibility in distributing the elements into arbitrary positions. My work with sparse arrays has first included the investigation of possible limitations related to their use when they are committed to transmit Diverging Waves (DWs). These are unfocused waves that may notably increase the frame rate in volumetric (3D) imaging. In this activity, I’ve done simulations and experiments at CREATIS (Lyon) to compare the achievable performance in terms of contrast and resolution when different DWs and sparse elements configurations are used. Finally, a consistent part of my PhD has been focused on the evaluation of the use of sparse arrays in spectral Doppler applications. The intention of this study was to evaluate at which extent the sparsification of probe elements may affect the spectral Doppler performance. To achieve this goal, the use of a full-gridded 1024-element 2D array was compared with the use of a sparse arrays obtained by properly selecting 256 elements out of the same full array. The experiments were developed on both a rotating agar disc (where high SNR are achievable) and on a flow phantom (to test a more realistic condition) at CREATIS. The results of this work quantitatively confirm the suitability of sparse arrays for spectral Doppler velocity measurements, provided the poor signal-to-noise ratio due to the use of few active elements is properly compensated.
2020
Piero Tortoli, Enrico Boni, Hervé Liebgott, Olivier Basset
Paolo Mattesini
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_Paolo_Mattesini.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1186186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact