The possibility to electrically tune the optical transparency of thin membranes is of significant interest for a number of possible applications, such as controllable light diffusers and smart windows, both for residential and mobile use. As a difference from state-of-the-art approaches, where with an applied voltage the transparency can only increase or decrease, this paper presents the first concept to make it electrically tuneable to both higher and lower values, within the same device. The concept is applicable to any soft insulating membrane, by coating both of its surfaces with a circular transparent stretchable conductor, surrounded by a stretchable annular conductor. The two conductors are used as independently addressable electrodes to generate a dielectric elastomer-based actuation of the membrane, so as to electrically control its surface topography. We show that the optical transmittance can electrically be modulated within a broad range, between 25% and 83%. This approach could be especially advantageous for systems that require such a broad tuning range within structures that have to be thin, lightweight and acoustically silent in operation.

Electrically tuning soft membranes to both a higher and a lower transparency / Chen L.; Ghilardi M.; Busfield J.J.C.; Carpi F.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 9:(2019), pp. 20125-1-20125-11. [10.1038/s41598-019-56505-9]

Electrically tuning soft membranes to both a higher and a lower transparency

Carpi F.
2019

Abstract

The possibility to electrically tune the optical transparency of thin membranes is of significant interest for a number of possible applications, such as controllable light diffusers and smart windows, both for residential and mobile use. As a difference from state-of-the-art approaches, where with an applied voltage the transparency can only increase or decrease, this paper presents the first concept to make it electrically tuneable to both higher and lower values, within the same device. The concept is applicable to any soft insulating membrane, by coating both of its surfaces with a circular transparent stretchable conductor, surrounded by a stretchable annular conductor. The two conductors are used as independently addressable electrodes to generate a dielectric elastomer-based actuation of the membrane, so as to electrically control its surface topography. We show that the optical transmittance can electrically be modulated within a broad range, between 25% and 83%. This approach could be especially advantageous for systems that require such a broad tuning range within structures that have to be thin, lightweight and acoustically silent in operation.
2019
9
20125-1
20125-11
Chen L.; Ghilardi M.; Busfield J.J.C.; Carpi F.
File in questo prodotto:
File Dimensione Formato  
Electrically tuning soft membranes to both a higher and a lower transparency.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 4.74 MB
Formato Adobe PDF
4.74 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1189298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact