Two new series of 1,3,4-oxadiazole benzenesulfonamide hybrids 3 and 4, having twenty novel compounds, have been designed and synthesized in order to assess their inhibition potential as CAIs against hCA I, II, IX, and XII. ‘Tail approach’ strategy has been used to design the aromatic sulfonamide scaffolds with carbonyl and amide linker. Excellent inhibitory activity against hCA I has been exhibited by compounds 3g and 4j, 3.5 magnitude of order better than reference drug AAZ (KI = 250 nM). Moreover, compound 4j (KI = 7.9 nM) effectively inhibited glaucoma-associated hCA II isoform as well as tumor-associated hCA IX isoform with KI = 16.3 nM. Further hCA XII was weakly inhibited by all the compounds with KI values ranging from 0.23 μM to 3.62 μM. Interestingly structure-activity relationship (SAR) study indicates that N-(3-nitrophenyl)-2-((5-(4-sulfamoylphenyl)-1,3,4-oxadiazol-2-yl)thio)acetamide (4j) is a potent compound to be investigated further for antiglaucoma and antitumor activity. The chemistry of the nature of different substitutions on the 1,3,4-oxadiazole bearing benzenesulfonamide substituted aromatic ring for potency and selectivity over one hCA isoform versus others is deliberated in the present study. In this context, the 1,3,4-oxadiazole motif can be a valuable tool worth developing for the procurement of novel and potent selective CAIs potentially useful for the management of a variety of diseases as chemotherapeutic agents.
Tail approach synthesis of novel benzenesulfonamides incorporating 1,3,4-oxadiazole hybrids as potent inhibitor of carbonic anhydrase I, II, IX, and XII isoenzymes / Sharma V.; Kumar R.; Angeli A.; Supuran C.T.; Sharma P.K.. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - ELETTRONICO. - 193:(2020), pp. 112219-112219. [10.1016/j.ejmech.2020.112219]
Tail approach synthesis of novel benzenesulfonamides incorporating 1,3,4-oxadiazole hybrids as potent inhibitor of carbonic anhydrase I, II, IX, and XII isoenzymes
Kumar R.;Angeli A.;Supuran C. T.;Sharma P. K.
2020
Abstract
Two new series of 1,3,4-oxadiazole benzenesulfonamide hybrids 3 and 4, having twenty novel compounds, have been designed and synthesized in order to assess their inhibition potential as CAIs against hCA I, II, IX, and XII. ‘Tail approach’ strategy has been used to design the aromatic sulfonamide scaffolds with carbonyl and amide linker. Excellent inhibitory activity against hCA I has been exhibited by compounds 3g and 4j, 3.5 magnitude of order better than reference drug AAZ (KI = 250 nM). Moreover, compound 4j (KI = 7.9 nM) effectively inhibited glaucoma-associated hCA II isoform as well as tumor-associated hCA IX isoform with KI = 16.3 nM. Further hCA XII was weakly inhibited by all the compounds with KI values ranging from 0.23 μM to 3.62 μM. Interestingly structure-activity relationship (SAR) study indicates that N-(3-nitrophenyl)-2-((5-(4-sulfamoylphenyl)-1,3,4-oxadiazol-2-yl)thio)acetamide (4j) is a potent compound to be investigated further for antiglaucoma and antitumor activity. The chemistry of the nature of different substitutions on the 1,3,4-oxadiazole bearing benzenesulfonamide substituted aromatic ring for potency and selectivity over one hCA isoform versus others is deliberated in the present study. In this context, the 1,3,4-oxadiazole motif can be a valuable tool worth developing for the procurement of novel and potent selective CAIs potentially useful for the management of a variety of diseases as chemotherapeutic agents.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.