Essential oils are complex mixtures of strongly active compounds, very volatile and sensitive to light, oxygen, moisture and temperature. Loading inside nanocarriers can be a strategy to increase their stability and successfully use them in therapy. In the present study, a commercial Melissa officinalis L. (Lamiaceae) essential oil (MEO) was analyzed by gas chromatography-mass spectrometry, loaded inside glycerosomes (MEO-GS) and evaluated for its anti-herpetic activity against HSV type 1. MEO-GS analyses were prepared by the thin layer evaporation method and they were characterized by light scattering techniques, determining average diameter, polydispersity index and ζ-potential. By transmission electron microscopy, MEO-GS appeared as small nano-sized vesicles with a spherical shape. MEO encapsulation efficiency inside glycerosomes, in terms of citral and β-caryophyllene, was found to be ca. 63% and 76% respectively, and MEO release from glycerosomes, performed by dialysis bag method, resulted in less than 10% within 24h. In addition, MEO-GS had high chemical and physical stability during 4 months of storage. Finally, MEO-GS were very active in inhibiting HSV type 1 infection of mammalian cells in vitro, without producing cytotoxic effects. Thus, MEO-GS could be a promising tool in order to provide a suitable anti-herpetic formulation.

Glycerosome of Melissa officinalis L. Essential Oil for Effective Anti-HSV Type 1 / Giulia Vanti, Sotirios G. Ntallis, Christos A. Panagiotidis, Virginia Dourdouni, Christina Patsoura, Maria Camilla Bergonzi, Diamanto Lazari, Anna Rita Bilia. - In: MOLECULES. - ISSN 1420-3049. - ELETTRONICO. - 25:(2020), pp. 0-0. [10.3390/molecules25143111]

Glycerosome of Melissa officinalis L. Essential Oil for Effective Anti-HSV Type 1

Giulia Vanti;Maria Camilla Bergonzi;Anna Rita Bilia
2020

Abstract

Essential oils are complex mixtures of strongly active compounds, very volatile and sensitive to light, oxygen, moisture and temperature. Loading inside nanocarriers can be a strategy to increase their stability and successfully use them in therapy. In the present study, a commercial Melissa officinalis L. (Lamiaceae) essential oil (MEO) was analyzed by gas chromatography-mass spectrometry, loaded inside glycerosomes (MEO-GS) and evaluated for its anti-herpetic activity against HSV type 1. MEO-GS analyses were prepared by the thin layer evaporation method and they were characterized by light scattering techniques, determining average diameter, polydispersity index and ζ-potential. By transmission electron microscopy, MEO-GS appeared as small nano-sized vesicles with a spherical shape. MEO encapsulation efficiency inside glycerosomes, in terms of citral and β-caryophyllene, was found to be ca. 63% and 76% respectively, and MEO release from glycerosomes, performed by dialysis bag method, resulted in less than 10% within 24h. In addition, MEO-GS had high chemical and physical stability during 4 months of storage. Finally, MEO-GS were very active in inhibiting HSV type 1 infection of mammalian cells in vitro, without producing cytotoxic effects. Thus, MEO-GS could be a promising tool in order to provide a suitable anti-herpetic formulation.
2020
25
0
0
Giulia Vanti, Sotirios G. Ntallis, Christos A. Panagiotidis, Virginia Dourdouni, Christina Patsoura, Maria Camilla Bergonzi, Diamanto Lazari, Anna Ri...espandi
File in questo prodotto:
File Dimensione Formato  
molecules glicerosomi 2020 pubblicato.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1200524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact