Theories of liquids and their simulation ignore any physical effects of dissolved atmospheric gas. Solubilities appear far too low to matter. Long-standing observations to the contrary, like cavitation, the salt dependence of bubble-bubble interactions, and the stability of degassed emulsions, continue to call that assumption into question, and these questions multiply. We herein explore more unexpected effects of dissolved gas that are inexplicable by classical theory. Electrical conductivities of different salts in water were measured as a function of concentration before and after degassing the liquid. The liquid/liquid phase separation of binary mixtures containing water, n-hexane, or perfluorooctane was significantly retarded after degassing. We anticipate that preliminary attempts at explaining these effect probably lie in self-organization of dissolved gas, like nanobubbles and cooperativity in gas molecular interactions. These are salt- and liquid-dependent.

Unexpected Properties of Degassed Solutions / Ninham, Barry W; Lo Nostro, Pierandrea. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 124:(2020), pp. 7872-7878. [10.1021/acs.jpcb.0c05001]

Unexpected Properties of Degassed Solutions

Lo Nostro, Pierandrea
2020

Abstract

Theories of liquids and their simulation ignore any physical effects of dissolved atmospheric gas. Solubilities appear far too low to matter. Long-standing observations to the contrary, like cavitation, the salt dependence of bubble-bubble interactions, and the stability of degassed emulsions, continue to call that assumption into question, and these questions multiply. We herein explore more unexpected effects of dissolved gas that are inexplicable by classical theory. Electrical conductivities of different salts in water were measured as a function of concentration before and after degassing the liquid. The liquid/liquid phase separation of binary mixtures containing water, n-hexane, or perfluorooctane was significantly retarded after degassing. We anticipate that preliminary attempts at explaining these effect probably lie in self-organization of dissolved gas, like nanobubbles and cooperativity in gas molecular interactions. These are salt- and liquid-dependent.
2020
124
7872
7878
Goal 13: Climate action
Ninham, Barry W; Lo Nostro, Pierandrea
File in questo prodotto:
File Dimensione Formato  
degassed_2020.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.31 MB
Formato Adobe PDF
3.31 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1204265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact