Ultrasound vector Doppler techniques for three-dimensional (3-D) blood velocity measurements are currently limited by low temporal resolution and high computational cost. In this paper, an efficient 3-D high-frame-rate vector Doppler method, which estimates the displacements in the frequency domain, is proposed. The novel method extends to 3-D an approach so far proposed for two-dimensional (2-D) velocity measurements by approximating the (x, y, z) displacement of a small volume through the displacements estimated for the 2-D regions parallel to the y and x directions, respectively. The new method was tested by simulation and experiments for a 3.7 MHz, 256-element, 2-D piezoelectric sparse spiral array. Simulations were also performed for an equivalent 7 MHz Capacitive Micromachined Ultrasonic Transducer spiral array. The results indicate performance (bias +/- standard deviation: 6.5 +/- 8.0) comparable to the performance obtained by using a linear array for 2-D velocity measurements. These results are particularly encouraging when considering that sparse arrays were used, which involve a lower signal-to-noise ratio and worse beam characteristics with respect to full 2-D arrays.

High-Frame-Rate 3-D Vector Flow Imaging in the Frequency Domain / Stefano Rossi; Alessandro Ramalli; Fabian Fool; Piero Tortoli. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 10:(2020), pp. 5365-5378. [10.3390/app10155365]

High-Frame-Rate 3-D Vector Flow Imaging in the Frequency Domain

Stefano Rossi;Alessandro Ramalli;Piero Tortoli
2020

Abstract

Ultrasound vector Doppler techniques for three-dimensional (3-D) blood velocity measurements are currently limited by low temporal resolution and high computational cost. In this paper, an efficient 3-D high-frame-rate vector Doppler method, which estimates the displacements in the frequency domain, is proposed. The novel method extends to 3-D an approach so far proposed for two-dimensional (2-D) velocity measurements by approximating the (x, y, z) displacement of a small volume through the displacements estimated for the 2-D regions parallel to the y and x directions, respectively. The new method was tested by simulation and experiments for a 3.7 MHz, 256-element, 2-D piezoelectric sparse spiral array. Simulations were also performed for an equivalent 7 MHz Capacitive Micromachined Ultrasonic Transducer spiral array. The results indicate performance (bias +/- standard deviation: 6.5 +/- 8.0) comparable to the performance obtained by using a linear array for 2-D velocity measurements. These results are particularly encouraging when considering that sparse arrays were used, which involve a lower signal-to-noise ratio and worse beam characteristics with respect to full 2-D arrays.
2020
10
5365
5378
Goal 3: Good health and well-being for people
Stefano Rossi; Alessandro Ramalli; Fabian Fool; Piero Tortoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1204509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact