Current 3-D Vector Flow Imaging (VFI) techniques are typically limited by either low temporal resolution and/or high computational cost. In this work, we illustrate a 3-D high frame rate VFI method, which efficiently splits the 3-D (x, y, z) displacement estimation in two separate 2-D VFI estimations operated in the frequency domain. The echo-data received after the transmission of plane waves are beamformed and high-pass filtered before being VFI processed. The new method was experimentally tested by using the ULA-OP 256 research system connected to a 3 MHz, 256-element, 2-D spiral array. Phantom experiments were conducted in steady laminar flow conditions for different probe-to-flow angles. For the tested conditions, the mean relative bias was 11.5% with a standard deviation of 10.9%. The 2-step approach applied to the 2-D VFI technique makes the new 3-D VFI method accurate and computationally efficient.

Experimental Validation of a New Method for 3-D Vector Flow Imaging in the Frequency Domain / Stefano Rossi, Fabian Fool, Alessandro Ramalli, Piero Tortoli. - ELETTRONICO. - (2020), pp. 0-2. (Intervento presentato al convegno 2020 IEEE International Ultrasonics Symposium (IUS) tenutosi a Las Vegas, Nevada, USA nel September 6-11, 2020).

Experimental Validation of a New Method for 3-D Vector Flow Imaging in the Frequency Domain

Stefano Rossi
;
Alessandro Ramalli;Piero Tortoli
2020

Abstract

Current 3-D Vector Flow Imaging (VFI) techniques are typically limited by either low temporal resolution and/or high computational cost. In this work, we illustrate a 3-D high frame rate VFI method, which efficiently splits the 3-D (x, y, z) displacement estimation in two separate 2-D VFI estimations operated in the frequency domain. The echo-data received after the transmission of plane waves are beamformed and high-pass filtered before being VFI processed. The new method was experimentally tested by using the ULA-OP 256 research system connected to a 3 MHz, 256-element, 2-D spiral array. Phantom experiments were conducted in steady laminar flow conditions for different probe-to-flow angles. For the tested conditions, the mean relative bias was 11.5% with a standard deviation of 10.9%. The 2-step approach applied to the 2-D VFI technique makes the new 3-D VFI method accurate and computationally efficient.
2020
2020 IEEE International Ultrasonics Symposium (IUS)
2020 IEEE International Ultrasonics Symposium (IUS)
Las Vegas, Nevada, USA
September 6-11, 2020
Goal 3: Good health and well-being for people
Stefano Rossi, Fabian Fool, Alessandro Ramalli, Piero Tortoli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1208680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact