Current projections estimate that in 2050 about 10 billion people will inhabit the earth and food production will need to increase by more than 60%. Food security will therefore represent a matter of global concern not easily tackled with current agriculture practices and curbed by the increasing scarcity of natural resources and climate change. Disrupting technologies are urgently needed to improve the efficiency of the food production system and to reduce the negative externalities of agriculture (soil erosion, desertification, air pollution, water and soil contamination, biodiversity loss, etc.). Among the most innovative technologies, the production of microbial protein (MP) in controlled and intensive systems called “bioreactors” is receiving increasing attention from research and industry. MP has low arable land requirements, does not directly compete with crop-based food commodities, and uses fertilizers with an almost 100% efficiency. This review considers the potential and limitations of four MP sources currently tested at pilot level or sold as food or feed ingredients: hydrogen oxidizing bacteria (HOB), methanotrophs, fungi, and microalgae (cyanobacteria). The environmental impacts (energy, land, water use, and GHG emissions) of these MP sources are compared with those of plant, animal, insect, and cultured meat-based proteins. Prices are reported to address whether MP may compete with traditional protein sources. Microalgae cultivation under artificial light is discussed as a strategy to ensure independence from weather conditions, continuous operation over the year, as well as high-quality biomass. The main challenges to the spreading of MP use are discussed.

Microbes: Food for the Future / Matilde Ciani , Antonio Lippolis , Federico Fava, Liliana Rodolfi , Alberto Niccolai, Mario R. Tredici. - In: FOODS. - ISSN 2304-8158. - ELETTRONICO. - 10:(2021), pp. 1-13. [10.3390/foods10050971]

Microbes: Food for the Future

Matilde Ciani;Liliana Rodolfi;Alberto Niccolai;Mario R. Tredici
2021

Abstract

Current projections estimate that in 2050 about 10 billion people will inhabit the earth and food production will need to increase by more than 60%. Food security will therefore represent a matter of global concern not easily tackled with current agriculture practices and curbed by the increasing scarcity of natural resources and climate change. Disrupting technologies are urgently needed to improve the efficiency of the food production system and to reduce the negative externalities of agriculture (soil erosion, desertification, air pollution, water and soil contamination, biodiversity loss, etc.). Among the most innovative technologies, the production of microbial protein (MP) in controlled and intensive systems called “bioreactors” is receiving increasing attention from research and industry. MP has low arable land requirements, does not directly compete with crop-based food commodities, and uses fertilizers with an almost 100% efficiency. This review considers the potential and limitations of four MP sources currently tested at pilot level or sold as food or feed ingredients: hydrogen oxidizing bacteria (HOB), methanotrophs, fungi, and microalgae (cyanobacteria). The environmental impacts (energy, land, water use, and GHG emissions) of these MP sources are compared with those of plant, animal, insect, and cultured meat-based proteins. Prices are reported to address whether MP may compete with traditional protein sources. Microalgae cultivation under artificial light is discussed as a strategy to ensure independence from weather conditions, continuous operation over the year, as well as high-quality biomass. The main challenges to the spreading of MP use are discussed.
2021
10
1
13
Goal 2: Zero hunger
Goal 3: Good health and well-being for people
Goal 12: Responsible consumption and production
Matilde Ciani , Antonio Lippolis , Federico Fava, Liliana Rodolfi , Alberto Niccolai, Mario R. Tredici
File in questo prodotto:
File Dimensione Formato  
foods-10-00971-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1237304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 35
social impact