The present dissertation investigated visual perception of numerosity. In the first part I reviewed the prominent literature about the topic. In the second chapter I described the first experiment, in which I measured confidence and reaction times to study the origins of the well-established visual and motor adaptation effects on numerosity perception. The results reinforce the evidence for a shared mechanism that encodes the quantity of both internally and externally generated events, and shows that the adaptation effects result from changes in sensory encoding, rather than perceptual decisions. More generally, in the study was introduced a novel and useful technique for investigating the mechanisms of numerosity adaptation and sensory adaptation in general. The third chapter investigated the effects of grouping cues on sensory precision of numerosity estimation. The results provide strong evidence that “grouping”, which can improve performance by up to 20%, can be induced by color and/or spatial proximity and occurs in temporal sequences as well as spatial arrays. In the fourth chapter I further examined the groupitizing phenomenon, by testing the hypothesis that the advantage provided by clustering stimuli relies on subitizing. This was achieved by manipulating attention, which is known to strongly affect the subitizing system. In the same chapter I discussed an additional explorative analysis on the relationship between calculation skills and estimation precision of grouped and ungrouped arrays. Taken together, the results showed that groupitizing is truly an attention-based process that leverages on the subitizing system. Furthermore, the outcome of the study suggested that measuring numerosity estimation thresholds with grouped stimuli may be a sensitive correlate of math abilities. In the fifth chapter I went on investigating the neural correlates of the groupitizing phenomenon with both a behavioral and a fMRI study. Similarly to the previous study I measured acuity in estimation of grouped and ungrouped stimuli and additionally I also examined whether the two tasks shared or not the same neural substrate. The results showed that the estimation of grouped and ungrouped stimuli activates similar regions in the right lateralized fronto-parietal network, however, only the presentation of grouped stimuli in the numerosity task elicited the additional activation of regions linked with calculations strategies, for instance the angular gyrus. Moreover, a multivariate pattern analysis showed that parietal activation patterns for individual numerosities could be accurately decoded in the parietal regions independently of the spatial arrangement of the stimuli. Finally, I correlated fMRI decoding accuracy of primary visual areas and angular gyrus with Wfs calculated in the grouped estimation task. Results suggested that the numerical representation in angular gyrus, but not in primary visual areas, is strongly linked with numerical performance and behavior. Overall, the results confirmed psychophysical studies highlighting that groupitizing shares the same regions and neural pattern mechanism of the estimation of ungrouped stimuli, but, furthermore, it also activates brain regions typically activated during calculation tasks. The last part of the dissertation is dedicated to investigating the link between numerosity precision, math abilities and a non-cognitive factor affecting mathematical learning: mathematical anxiety. To this aim, university students with low (< 25th percentile) and high (> 75th percentile) score in the Abbreviate Math Anxiety Scale were tested in multiple domains: a) math proficiency assessed using a standardized test (Mathematics Prerequisite for Psychometrics), b) visuo-spatial attention capacity, measured via a Multiple Object Tracking task, and c) the sensory precision for non-numerical quantities. The results confirmed previous studies showing that math abilities and numerosity precision correlate in subjects with high math anxiety. Furthermore, neither precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with math capacities. However, within the group with high MA the data also revealed a relationship between numerosity precision and math anxiety, with math anxiety playing a key role in mediating the correlation between participants’ numerosity precision and their math achievement. Taken together, this last study suggests an interplay between extreme levels of MA and sensory precision in the processing of non-symbolic numerosity, giving further insight into the processes (and the variables affecting these processes) behind the acquisition of formal mathematical abilities. In conclusion, the present work assessed the ability to perceive non-symbolic quantities in adults while providing new experimental evidence suggesting its perceptual nature and its link with cognitive and affective factors.

Evidence on perceptual nature of the number sense, on groupitizing phenomenon and on the relationship between number sense, math abilities and math anxiety / Maldonado Moscoso Paula Andrea. - (2021).

Evidence on perceptual nature of the number sense, on groupitizing phenomenon and on the relationship between number sense, math abilities and math anxiety

Maldonado Moscoso Paula Andrea
2021

Abstract

The present dissertation investigated visual perception of numerosity. In the first part I reviewed the prominent literature about the topic. In the second chapter I described the first experiment, in which I measured confidence and reaction times to study the origins of the well-established visual and motor adaptation effects on numerosity perception. The results reinforce the evidence for a shared mechanism that encodes the quantity of both internally and externally generated events, and shows that the adaptation effects result from changes in sensory encoding, rather than perceptual decisions. More generally, in the study was introduced a novel and useful technique for investigating the mechanisms of numerosity adaptation and sensory adaptation in general. The third chapter investigated the effects of grouping cues on sensory precision of numerosity estimation. The results provide strong evidence that “grouping”, which can improve performance by up to 20%, can be induced by color and/or spatial proximity and occurs in temporal sequences as well as spatial arrays. In the fourth chapter I further examined the groupitizing phenomenon, by testing the hypothesis that the advantage provided by clustering stimuli relies on subitizing. This was achieved by manipulating attention, which is known to strongly affect the subitizing system. In the same chapter I discussed an additional explorative analysis on the relationship between calculation skills and estimation precision of grouped and ungrouped arrays. Taken together, the results showed that groupitizing is truly an attention-based process that leverages on the subitizing system. Furthermore, the outcome of the study suggested that measuring numerosity estimation thresholds with grouped stimuli may be a sensitive correlate of math abilities. In the fifth chapter I went on investigating the neural correlates of the groupitizing phenomenon with both a behavioral and a fMRI study. Similarly to the previous study I measured acuity in estimation of grouped and ungrouped stimuli and additionally I also examined whether the two tasks shared or not the same neural substrate. The results showed that the estimation of grouped and ungrouped stimuli activates similar regions in the right lateralized fronto-parietal network, however, only the presentation of grouped stimuli in the numerosity task elicited the additional activation of regions linked with calculations strategies, for instance the angular gyrus. Moreover, a multivariate pattern analysis showed that parietal activation patterns for individual numerosities could be accurately decoded in the parietal regions independently of the spatial arrangement of the stimuli. Finally, I correlated fMRI decoding accuracy of primary visual areas and angular gyrus with Wfs calculated in the grouped estimation task. Results suggested that the numerical representation in angular gyrus, but not in primary visual areas, is strongly linked with numerical performance and behavior. Overall, the results confirmed psychophysical studies highlighting that groupitizing shares the same regions and neural pattern mechanism of the estimation of ungrouped stimuli, but, furthermore, it also activates brain regions typically activated during calculation tasks. The last part of the dissertation is dedicated to investigating the link between numerosity precision, math abilities and a non-cognitive factor affecting mathematical learning: mathematical anxiety. To this aim, university students with low (< 25th percentile) and high (> 75th percentile) score in the Abbreviate Math Anxiety Scale were tested in multiple domains: a) math proficiency assessed using a standardized test (Mathematics Prerequisite for Psychometrics), b) visuo-spatial attention capacity, measured via a Multiple Object Tracking task, and c) the sensory precision for non-numerical quantities. The results confirmed previous studies showing that math abilities and numerosity precision correlate in subjects with high math anxiety. Furthermore, neither precision in size-discrimination nor visuo-spatial attentional capacity were found to correlate with math capacities. However, within the group with high MA the data also revealed a relationship between numerosity precision and math anxiety, with math anxiety playing a key role in mediating the correlation between participants’ numerosity precision and their math achievement. Taken together, this last study suggests an interplay between extreme levels of MA and sensory precision in the processing of non-symbolic numerosity, giving further insight into the processes (and the variables affecting these processes) behind the acquisition of formal mathematical abilities. In conclusion, the present work assessed the ability to perceive non-symbolic quantities in adults while providing new experimental evidence suggesting its perceptual nature and its link with cognitive and affective factors.
2021
Roberto Arrighi, David C. Burr
COLOMBIA
Maldonado Moscoso Paula Andrea
File in questo prodotto:
File Dimensione Formato  
Maldonado_M_Thesis.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 8.94 MB
Formato Adobe PDF
8.94 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1238434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact