With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.
Diamond sensors for future high energy experiments / M. Artuso; F. Bachmair; L. Bani; M. Bartosik; J. Beacham; V. Bellini; V. Belyaev; B. Bentele; E. Berdermann; P. Bergonzo; A. Bes; J-M. Brom; M. Bruzzi; M. Cerv; C. Chau; G. Chiodini; D. Chren; V. Cindro; G. Claus; J. Collot; S. Costa; J. Cumalat; A. Dabrowski; R. D'Aessandro; W. de Boer; B. Dehning; D. Dobos; C. Dorfer; M. Dunser; V. Eremin; R. Eusebi; G. Forcolin; J. Forneris; H. Frais-Kolbl; K.K. Gan; M. Gastal; M. Goffe; J. Goldstein; A. Golubev; L. Gonella; A. Gorisek; L. Graber; E. Grigoriev; J. Grosse-Knetter; B. Gui; M. Guthoff; I. Haughton; D. Hidas; D. Hits; M. Hoeferkamp; T. Hofmann; J. Hosslet; J-Y. Hostachy; F. Hugging; H. Jansen; J. Janssen; H. Kagan; K. Kanxheri; G. Kasieczka; R. Kass; F. Kassel; M. Kis; G. Kramberger; S. Kuleshov; A. Lacoste; S. Lagomarsino; A. Lo Giudice; C. Maazouzi; I. Mandic; C. Mathieu; N. McFadden; G. McGoldrick; M. Menichelli; M. Mikuz; A. Morozzi; J. Moss; R. Mountain; S. Murphy; A. Oh; P. Olivero; G. Parrini; D. Passeri; M. Pauluzzi; H. Pernegger; R. Perrino; F. Picollo; M. Pomorski; R. Potenza; A. Quadt; A. Re; G. Riley; S. Roe; M. Sapinski; M. Scaringella; S. Schnetzer; T. Schreiner; S. Sciortino; A. Scorzoni; S. Seidel; L. Servoli; A. Sfyrla; G. Shimchuk; D.S. Smith; B. Sopko; V. Sopko; S. Spagnolo; S. Spanier; K. Stenson; R. Stone; C. Sutera; A. Taylor; M. Traeger; D. Tromson; W. Trischuk; C. Tuve; L. Uplegger; J. Velthuis; N. Venturi; E. Vittone; S. Wagner; R. Wallny; J. C. Wang; P. Weilhammer; J. Weingarten; C. Weiss; T. Wengler; N. Wermes; M. Yamouni; M. Zavrtanik. - In: NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT. - ISSN 0168-9002. - STAMPA. - 831:(2016), pp. 370-377. [10.1016/j.nima.2016.03.039]
Diamond sensors for future high energy experiments
M. Bruzzi;S. Lagomarsino;G. Parrini;M. Scaringella;S. Sciortino;
2016
Abstract
With the planned upgrade of the LHC to High-Luminosity-LHC [1], the general purpose experiments ATLAS and CMS are planning to upgrade their innermost tracking layers with more radiation tolerant technologies. Chemical Vapor Deposition CVD diamond is one such technology. CVD diamond sensors are an established technology as beam condition monitors in the highest radiation areas of all LHC experiments. The RD42-collaboration at CERN is leading the effort to use CVD diamond as a material for tracking detectors operating in extreme radiation environments. An overview of the latest developments from RD42 is presented including the present status of diamond sensor production, a study of pulse height dependencies on incident particle flux and the development of 3D diamond sensors.File | Dimensione | Formato | |
---|---|---|---|
Diamond sensors for future high energy experiments.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.