Hybrid materials composed of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid self-assemblies possess considerable applicative potential in the biomedical field, specifically, for drug/nutrient delivery. Recently, we showed that SPIONs-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the action of temperature or of an alternating magnetic field (AMF). This transition triggers the release of drugs embedded in the lipid scaffold or in the water channels. In this contribution, we address this phenomenon in depth, to fully elucidate the structural details and optimize the design of hybrid multifunctional carriers for drug delivery. Combining small-angle X-ray scattering (SAXS) with a magnetic characterization, we find that, in bulk lipid cubic phases, the cubic-to-hexagonal transition determines the magnetic response of SPIONs. We then extend the investigation from bulk liquid-crystalline phases to colloidal dispersions, i.e., to lipid/SPIONs nanoparticles with cubic internal structure (“magnetocubosomes”). Through Synchrotron SAXS, we monitor the structural response of magnetocubosomes while exposed to an AMF: the magnetic energy, converted into heat by SPIONs, activates the cubic-to-hexagonal transition, and can thus be used as a remote stimulus to spike drug release “on-demand”. In addition, we show that the AMF-induced phase transition in magnetocubosomes steers the realignment of SPIONs into linear string assemblies and connect this effect with the change in their magnetic properties, observed at the bulk level. Finally, we assess the internalization ability and cytotoxicity of magnetocubosomes in vitro on HT29 adenocarcinoma cancer cells, in order to test the applicability of these smart carriers in drug delivery applications.
Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications / Lucrezia Caselli, Marco Mendozza, Beatrice Muzzi, Alessandra Toti, Costanza Montis, Tommaso Mello, Lorenzo Di Cesare Mannelli, Carla Ghelardini,Claudio Sangregorio, Debora Berti. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - ELETTRONICO. - 22:(2021), pp. 9268-9268. [10.3390/ijms22179268]
Lipid Cubic Mesophases Combined with Superparamagnetic Iron Oxide Nanoparticles: A Hybrid Multifunctional Platform with Tunable Magnetic Properties for Nanomedical Applications
Lucrezia Caselli;Marco Mendozza;Beatrice Muzzi;Alessandra Toti;Costanza Montis;Tommaso Mello;Lorenzo Di Cesare Mannelli;Carla Ghelardini;Claudio Sangregorio;Debora Berti
2021
Abstract
Hybrid materials composed of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid self-assemblies possess considerable applicative potential in the biomedical field, specifically, for drug/nutrient delivery. Recently, we showed that SPIONs-doped lipid cubic liquid crystals undergo a cubic-to-hexagonal phase transition under the action of temperature or of an alternating magnetic field (AMF). This transition triggers the release of drugs embedded in the lipid scaffold or in the water channels. In this contribution, we address this phenomenon in depth, to fully elucidate the structural details and optimize the design of hybrid multifunctional carriers for drug delivery. Combining small-angle X-ray scattering (SAXS) with a magnetic characterization, we find that, in bulk lipid cubic phases, the cubic-to-hexagonal transition determines the magnetic response of SPIONs. We then extend the investigation from bulk liquid-crystalline phases to colloidal dispersions, i.e., to lipid/SPIONs nanoparticles with cubic internal structure (“magnetocubosomes”). Through Synchrotron SAXS, we monitor the structural response of magnetocubosomes while exposed to an AMF: the magnetic energy, converted into heat by SPIONs, activates the cubic-to-hexagonal transition, and can thus be used as a remote stimulus to spike drug release “on-demand”. In addition, we show that the AMF-induced phase transition in magnetocubosomes steers the realignment of SPIONs into linear string assemblies and connect this effect with the change in their magnetic properties, observed at the bulk level. Finally, we assess the internalization ability and cytotoxicity of magnetocubosomes in vitro on HT29 adenocarcinoma cancer cells, in order to test the applicability of these smart carriers in drug delivery applications.File | Dimensione | Formato | |
---|---|---|---|
ijms-22-09268.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.66 MB
Formato
Adobe PDF
|
2.66 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.