The purpose of this paper is the derivation, in the framework of Gamma-convergence, of linear elastic continuum theories from a general class of atomistic models, in the regime of small deformations. Existing results are available only in the special case of one-well potentials accounting for very short interactions. We consider here the general case of multiwell potentials accounting for interactions of finite but arbitrarily long range. The extension to this setting requires a novel idea for the proof of the Gamma-convergence which is interesting in its own right and potentially relevant in other applications.

Derivation of linear elasticity for a general class of atomistic energies / Alicandro R.; Lazzaroni G.; Palombaro M.. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - ELETTRONICO. - 53:(2021), pp. 5060-5093. [10.1137/21M1397179]

Derivation of linear elasticity for a general class of atomistic energies

Alicandro R.;Lazzaroni G.;Palombaro M.
2021

Abstract

The purpose of this paper is the derivation, in the framework of Gamma-convergence, of linear elastic continuum theories from a general class of atomistic models, in the regime of small deformations. Existing results are available only in the special case of one-well potentials accounting for very short interactions. We consider here the general case of multiwell potentials accounting for interactions of finite but arbitrarily long range. The extension to this setting requires a novel idea for the proof of the Gamma-convergence which is interesting in its own right and potentially relevant in other applications.
2021
53
5060
5093
Alicandro R.; Lazzaroni G.; Palombaro M.
File in questo prodotto:
File Dimensione Formato  
2021-Ali-Laz-Pal-SIAM-SIMA-print.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 538.38 kB
Formato Adobe PDF
538.38 kB Adobe PDF   Richiedi una copia
A-L-P-2021_DiscreteLinear-REVISED.pdf

accesso aperto

Descrizione: AAM
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 543.38 kB
Formato Adobe PDF
543.38 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1247629
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact