The Gas-Coupled Laser Acoustic Detection (GCLAD) is an optical technique for ultrasonic detection based on the deviation that a laser beam sustains when travelling in a fluid that features refractive index fluctuations. If the laser beam is perpendicular to the wave propagation direction, the technique enables simultaneous detection of direct waves in mechanical components and eventual echoes from defects to be achieved. The technique is applied to the inspection of elements predominantly extending in one/two dimensions as bars and axisymmetric pieces, exploiting a signal enhancement effect occurring in defects’ proximity. The phenomenon, namely constructive interference between wave crests of a direct Rayleigh ultrasound and those associated with reflections on a defect flank, is first illustrated numerically. The effect of parameters like the angle between wave propagation direction and source-receiver distance on the GCLAD sensitivity is then experimentally highlighted. The technique is finally implemented to B-scan a steel plate with 1 mm wide, 20 mm long, and 3 mm deep surface defects. Since the GCLAD probe laser beam insists on an entire line, defects present on that line can be identified without moving the device along such direction. This reduces the monitoring time compared to techniques leveraging on traditional air-coupled transducers or more sophisticated methods (Scanning Laser Source).

Line scanning with Gas-Coupled Laser Acoustic Detection (GCLAD) / Michelangelo-Santo Gulino, Mara Bruzzi, Dario Vangi. - ELETTRONICO. - (2022), pp. 1-1. (Intervento presentato al convegno AIVELA XXIX National Meeting 2020) [10.1088/1742-6596/2293/1/012009].

Line scanning with Gas-Coupled Laser Acoustic Detection (GCLAD)

Michelangelo-Santo Gulino
;
Mara Bruzzi;Dario Vangi
2022

Abstract

The Gas-Coupled Laser Acoustic Detection (GCLAD) is an optical technique for ultrasonic detection based on the deviation that a laser beam sustains when travelling in a fluid that features refractive index fluctuations. If the laser beam is perpendicular to the wave propagation direction, the technique enables simultaneous detection of direct waves in mechanical components and eventual echoes from defects to be achieved. The technique is applied to the inspection of elements predominantly extending in one/two dimensions as bars and axisymmetric pieces, exploiting a signal enhancement effect occurring in defects’ proximity. The phenomenon, namely constructive interference between wave crests of a direct Rayleigh ultrasound and those associated with reflections on a defect flank, is first illustrated numerically. The effect of parameters like the angle between wave propagation direction and source-receiver distance on the GCLAD sensitivity is then experimentally highlighted. The technique is finally implemented to B-scan a steel plate with 1 mm wide, 20 mm long, and 3 mm deep surface defects. Since the GCLAD probe laser beam insists on an entire line, defects present on that line can be identified without moving the device along such direction. This reduces the monitoring time compared to techniques leveraging on traditional air-coupled transducers or more sophisticated methods (Scanning Laser Source).
2022
Proceedings of the 29th AIVELA
AIVELA XXIX National Meeting 2020
Goal 9: Industry, Innovation, and Infrastructure
Michelangelo-Santo Gulino, Mara Bruzzi, Dario Vangi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1251697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact