: Coproheme decarboxylases (ChdCs) are utilized by monoderm bacteria to produce heme b by a stepwise oxidative decarboxylation of the 2- and 4-propionate groups of iron coproporphyrin III (coproheme) to vinyl groups. This work compares the effect of hemin reconstitution versus the hydrogen peroxide-mediated conversion of coproheme to heme b in the actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) and selected variants. Both ferric and ferrous forms of wild-type (WT) CdChdC and its H118A, H118F, and A207E variants were characterized by resonance Raman and UV-vis spectroscopies. The heme b ligand assumes the same conformation in the WT active site for both the reconstituted and H2O2-mediated product, maintaining the same vinyl and propionate interactions with the protein. Nevertheless, it is important to note that the distal His118, which serves as a distal base, plays an important role in the stabilization of the cavity and for the heme b reconstitution. In fact, while the access of heme b is prevented by steric hindrance in the H118F variant, the substitution of His with the small apolar Ala residue favors the insertion of the heme b in the reversed conformation. The overall data strongly support that during decarboxylation, the intermediate product, a monovinyl-monopropionyl deuteroheme, rotates by 90o within the active site. Moreover, in the ferrous forms the frequency of the ν(Fe-Nδ(His)) stretching mode provides information on the strength of the proximal Fe-His bond and allows us to follow its variation during the two oxidative decarboxylation steps.

An active site at work - the role of key residues in C. diphteriae coproheme decarboxylase / Sebastiani, Federico; Risorti, Riccardo; Niccoli, Chiara; Michlits, Hanna; Becucci, Maurizio; Hofbauer, Stefan; Smulevich, Giulietta. - In: JOURNAL OF INORGANIC BIOCHEMISTRY. - ISSN 1873-3344. - ELETTRONICO. - 229:(2022), pp. 1-8. [10.1016/j.jinorgbio.2022.111718]

An active site at work - the role of key residues in C. diphteriae coproheme decarboxylase

Sebastiani, Federico;Becucci, Maurizio;Smulevich, Giulietta
2022

Abstract

: Coproheme decarboxylases (ChdCs) are utilized by monoderm bacteria to produce heme b by a stepwise oxidative decarboxylation of the 2- and 4-propionate groups of iron coproporphyrin III (coproheme) to vinyl groups. This work compares the effect of hemin reconstitution versus the hydrogen peroxide-mediated conversion of coproheme to heme b in the actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) and selected variants. Both ferric and ferrous forms of wild-type (WT) CdChdC and its H118A, H118F, and A207E variants were characterized by resonance Raman and UV-vis spectroscopies. The heme b ligand assumes the same conformation in the WT active site for both the reconstituted and H2O2-mediated product, maintaining the same vinyl and propionate interactions with the protein. Nevertheless, it is important to note that the distal His118, which serves as a distal base, plays an important role in the stabilization of the cavity and for the heme b reconstitution. In fact, while the access of heme b is prevented by steric hindrance in the H118F variant, the substitution of His with the small apolar Ala residue favors the insertion of the heme b in the reversed conformation. The overall data strongly support that during decarboxylation, the intermediate product, a monovinyl-monopropionyl deuteroheme, rotates by 90o within the active site. Moreover, in the ferrous forms the frequency of the ν(Fe-Nδ(His)) stretching mode provides information on the strength of the proximal Fe-His bond and allows us to follow its variation during the two oxidative decarboxylation steps.
2022
229
1
8
Sebastiani, Federico; Risorti, Riccardo; Niccoli, Chiara; Michlits, Hanna; Becucci, Maurizio; Hofbauer, Stefan; Smulevich, Giulietta
File in questo prodotto:
File Dimensione Formato  
JIB-Ferrous CdChdC.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1254141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact