A nanostructured Ag/Au adhesive film for H2O2 reagentless determination is here proposed. The film has been realised onto ELISA polystyrene microplates. Microwells surface has been initially modified with a gold nanoparticles (AuNPs)/polydopamine thin-film. The pristine AuNPs-decorated film was later functionalized with catechin (Au-CT) allowing a uniform formation of a plasmonic active nanostructured silver network in presence of Ag+. Changes in localized surface plasmon resonance (LSPR) of the silver network upon addition of H2O2 has been used as analytical signal, taking advantage of the etching phenomenon. The Ag/Au nanocomposite-film is characterized by a well-defined (LSPRmax = 405 ± 5 nm), reproducible (intraplate RSD ≤ 9.8%, n = 96; inter-plate RSD ≤ 11.4%, n = 480) and stable LSPR signal. The film's analytical features have been tested for H2O2 and glucose (bio)sensing. Satisfactory analytical performances were obtained both for H2O2 (linear range 1–200 μM, R2 = 0.9992, RSD ≤ 6.3%, LOD = 0.2 μM) and glucose (linear range 2–250 μM, R2 = 0.9998, RSD ≤ 8.9%, LOD = 0.4 μM). As proof of applicability, the determination of the two analytes in soft drinks has been carried out achieving good and reproducible recoveries (84–111%; RSD ≤ 9%). The developed nanostructured film overcomes analytical drawbacks associated with the use of colloidal dispersions in plasmonic assays carried out in solution; the low cost, robustness, ease of use and possibility of coupling enzymatic reactions appears very promising for (bio)sensors based on the detection of H2O2.

Plasmonic active film integrating gold/silver nanostructures for H2O2 readout / Scroccarello A.; Della Pelle F.; Ferraro G.; Fratini E.; Tempera F.; Dainese E.; Compagnone D.. - In: TALANTA. - ISSN 0039-9140. - ELETTRONICO. - 222:(2021), pp. 0-0. [10.1016/j.talanta.2020.121682]

Plasmonic active film integrating gold/silver nanostructures for H2O2 readout

Ferraro G.;Fratini E.;
2021

Abstract

A nanostructured Ag/Au adhesive film for H2O2 reagentless determination is here proposed. The film has been realised onto ELISA polystyrene microplates. Microwells surface has been initially modified with a gold nanoparticles (AuNPs)/polydopamine thin-film. The pristine AuNPs-decorated film was later functionalized with catechin (Au-CT) allowing a uniform formation of a plasmonic active nanostructured silver network in presence of Ag+. Changes in localized surface plasmon resonance (LSPR) of the silver network upon addition of H2O2 has been used as analytical signal, taking advantage of the etching phenomenon. The Ag/Au nanocomposite-film is characterized by a well-defined (LSPRmax = 405 ± 5 nm), reproducible (intraplate RSD ≤ 9.8%, n = 96; inter-plate RSD ≤ 11.4%, n = 480) and stable LSPR signal. The film's analytical features have been tested for H2O2 and glucose (bio)sensing. Satisfactory analytical performances were obtained both for H2O2 (linear range 1–200 μM, R2 = 0.9992, RSD ≤ 6.3%, LOD = 0.2 μM) and glucose (linear range 2–250 μM, R2 = 0.9998, RSD ≤ 8.9%, LOD = 0.4 μM). As proof of applicability, the determination of the two analytes in soft drinks has been carried out achieving good and reproducible recoveries (84–111%; RSD ≤ 9%). The developed nanostructured film overcomes analytical drawbacks associated with the use of colloidal dispersions in plasmonic assays carried out in solution; the low cost, robustness, ease of use and possibility of coupling enzymatic reactions appears very promising for (bio)sensors based on the detection of H2O2.
2021
222
0
0
Goal 3: Good health and well-being for people
Scroccarello A.; Della Pelle F.; Ferraro G.; Fratini E.; Tempera F.; Dainese E.; Compagnone D.
File in questo prodotto:
File Dimensione Formato  
2021Talanta_AuAgH2O2readout.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1256174
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact