Introduction Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. Methods A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. Results Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. Conclusion Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.
MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia / Manera A.L.; Dadar M.; Van Swieten J.C.; Borroni B.; Sanchez-Valle R.; Moreno F.; Laforce R.; Graff C.; Synofzik M.; Galimberti D.; Rowe J.B.; Masellis M.; Tartaglia M.C.; Finger E.; Vandenberghe R.; de Mendonca A.; Tagliavini F.; Santana I.; Butler C.R.; Gerhard A.; Danek A.; Levin J.; Otto M.; Frisoni G.; Ghidoni R.; Sorbi S.; Rohrer J.D.; Ducharme S.; Louis Collins D.; Rosen H.; Dickerson B.C.; Domoto-Reilly K.; Knopman D.; Boeve B.F.; Boxer A.L.; Kornak J.; Miller B.L.; Seeley W.W.; Gorno-Tempini M.-L.; McGinnis S.; Mandelli M.L.; Afonso S.; Almeida M.R.; Anderl-Straub S.; Andersson C.; Antonell A.; Archetti S.; Arighi A.; Balasa M.; Barandiaran M.; Bargallo N.; Bartha R.; Bender B.; Benussi A.; Benussi L.; Bessi V.; Binetti G.; Black S.; Bocchetta M.; Borrego-Ecija S.; Bras J.; Bruffaerts R.; Caroppo P.; Cash D.; Castelo-Branco M.; Convery R.; Cope T.; Cosseddu M.; de Arriba M.; Di Fede G.; Diaz Z.; Duro D.; Fenoglio C.; Ferrari C.; Ferreira C.; Ferreira C.B.; Flanagan T.; Fox N.; Freedman M.; Fumagalli G.; Gabilondo A.; Gasparotti R.; Gauthier S.; Gazzina S.; Giaccone G.; Gorostidi A.; Greaves C.; Guerreiro R.; Heller C.; Hoegen T.; Indakoetxea B.; Jelic V.; Jiskoot L.; Karnath H.-O.; Keren R.; Leitao M.J.; Llado A.; Lombardi G.; Loosli S.; Maruta C.; Mead S.; Meeter L.; Miltenberger G.; van Minkelen R.; Mitchell S.; Moore K.M.; Nacmias B.; Neason M.; Nicholas J.; Oijerstedt L.; Olives J.; Ourselin S.; Padovani A.; Panman J.; Papma J.; Peakman G.; Piaceri I.; Pievani M.; Pijnenburg Y.; Polito C.; Premi E.; Prioni S.; Prix C.; Rademakers R.; Redaelli V.; Rittman T.; Rogaeva E.; Rosa-Neto P.; Rossi G.; Rossor M.; Santiago B.; Scarpini E.; Schonecker S.; Semler E.; Shafei R.; Shoesmith C.; Tabuas-Pereira M.; Tainta M.; Taipa R.; Tang-Wai D.; Thomas D.L.; Thonberg H.; Timberlake C.; Tiraboschi P.; Todd E.; Vandamme P.; Vandenbulcke M.; Veldsman M.; Verdelho A.; Villanua J.; Warren J.; Wilke C.; Woollacott I.; Wlasich E.; Zetterberg H.; Zulaica M.. - In: JOURNAL OF NEUROLOGY, NEUROSURGERY AND PSYCHIATRY. - ISSN 0022-3050. - ELETTRONICO. - 92:(2021), pp. 608-616. [10.1136/jnnp-2020-324106]
MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia
Sorbi S.;Bessi V.;Ferrari C.;Lombardi G.;Nacmias B.;Piaceri I.;Polito C.;
2021
Abstract
Introduction Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. Methods A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. Results Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. Conclusion Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.File | Dimensione | Formato | |
---|---|---|---|
manera jnnp.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.