We establish quaternionic and octonionic analogs of the classical Riemann surfaces. The construction of these manifolds has nice peculiarities and the scrutiny of Bernhard Riemann approach to Riemann surfaces, mainly based on conformality, leads to the definition of slice conformal or slice isothermal parameterization of quaternionic or octonionic Riemann manifolds. These new classes of manifolds include slice regular quaternionic and octonionic curves, graphs of slice regular functions, the 4 and 8 dimensional spheres, the helicoidal and catenoidal 4 and 8 dimensional manifolds. Using appro- priate Riemann manifolds, we also give a unified definition of the quater- nionic and octonionic logarithm and n-th root function.

Slice conformality and Riemann manifolds on quaternions and octonions / Graziano Gentili; Jasna Prezelj; Fabio Vlacci. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 302:(2022), pp. 971-994. [10.1007/s00209-022-03079-4]

Slice conformality and Riemann manifolds on quaternions and octonions

Graziano Gentili
;
2022

Abstract

We establish quaternionic and octonionic analogs of the classical Riemann surfaces. The construction of these manifolds has nice peculiarities and the scrutiny of Bernhard Riemann approach to Riemann surfaces, mainly based on conformality, leads to the definition of slice conformal or slice isothermal parameterization of quaternionic or octonionic Riemann manifolds. These new classes of manifolds include slice regular quaternionic and octonionic curves, graphs of slice regular functions, the 4 and 8 dimensional spheres, the helicoidal and catenoidal 4 and 8 dimensional manifolds. Using appro- priate Riemann manifolds, we also give a unified definition of the quater- nionic and octonionic logarithm and n-th root function.
2022
302
971
994
Graziano Gentili; Jasna Prezelj; Fabio Vlacci
File in questo prodotto:
File Dimensione Formato  
Slice Conformality.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 342.69 kB
Formato Adobe PDF
342.69 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1261578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact