Herein we report the synthesis of a set of seventeen 3-sulfonamide substituted coumarin derivatives. Prepared compounds were tested in vitro for inhibition of four physiologically relevant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Several coumarin sulfonamides displayed low nanomolar KI values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Some of these compounds exerted a concentration-dependent antiproliferative action toward RT4 human bladder cancer and especially A431 human epidermoid carcinoma cell lines. In the meantime, the viability of non-tumorigenic hTERT immortalized human foreskin fibroblast cell line Bj-5ta was not significantly affected by the obtained derivatives. Interestingly, compound 10q (2-oxo-2H-benzo [h]chromene-3-sulfonamide) showed a profound and selective dose-dependent inhibition of A431 cell growth with low nanomolar IC50 values. We demonstrated that 10q possessed a concentration-dependent apoptosis induction activity associated with caspase 3/7 activation in cancer cells. As carbonic anhydrase isoforms in question were not potently inhibited by this compound, its antiproliferative effects likely involve other mechanisms, such as DNA intercalation. Compound 10q clearly represents a viable lead for further development of new-generation anticancer agents.

Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo[h]chromene-3-sulfonamide – A new caspase-activating proapoptotic agent / Dar'in D.; Kantin G.; Kalinin S.; Sharonova T.; Bunev A.; Ostapenko G.I.; Nocentini A.; Sharoyko V.; Supuran C.T.; Krasavin M.. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - ELETTRONICO. - 222:(2021), pp. 113589--. [10.1016/j.ejmech.2021.113589]

Investigation of 3-sulfamoyl coumarins against cancer-related IX and XII isoforms of human carbonic anhydrase as well as cancer cells leads to the discovery of 2-oxo-2H-benzo[h]chromene-3-sulfonamide – A new caspase-activating proapoptotic agent

Nocentini A.;Supuran C. T.;
2021

Abstract

Herein we report the synthesis of a set of seventeen 3-sulfonamide substituted coumarin derivatives. Prepared compounds were tested in vitro for inhibition of four physiologically relevant isoforms of the metalloenzyme human carbonic anhydrase (hCA, EC 4.2.1.1). Several coumarin sulfonamides displayed low nanomolar KI values against therapeutically relevant hCA II, IX, and XII, whereas they did not potently inhibit hCA I. Some of these compounds exerted a concentration-dependent antiproliferative action toward RT4 human bladder cancer and especially A431 human epidermoid carcinoma cell lines. In the meantime, the viability of non-tumorigenic hTERT immortalized human foreskin fibroblast cell line Bj-5ta was not significantly affected by the obtained derivatives. Interestingly, compound 10q (2-oxo-2H-benzo [h]chromene-3-sulfonamide) showed a profound and selective dose-dependent inhibition of A431 cell growth with low nanomolar IC50 values. We demonstrated that 10q possessed a concentration-dependent apoptosis induction activity associated with caspase 3/7 activation in cancer cells. As carbonic anhydrase isoforms in question were not potently inhibited by this compound, its antiproliferative effects likely involve other mechanisms, such as DNA intercalation. Compound 10q clearly represents a viable lead for further development of new-generation anticancer agents.
2021
222
113589
-
Dar'in D.; Kantin G.; Kalinin S.; Sharonova T.; Bunev A.; Ostapenko G.I.; Nocentini A.; Sharoyko V.; Supuran C.T.; Krasavin M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1262737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 22
social impact