The first author with B. Sturmfels studied in [16] the variety of matrices with eigenvectors in a given linear subspace, called the Kalman variety. We extend that study from matrices to symmetric tensors, proving in the tensor setting the irreducibility of the Kalman variety and computing its codimension and degree. Furthermore, we consider the Kalman variety of tensors having singular t-tuples with the first component in a given linear subspace and we prove analogous results, which are new even in the case of matrices. Main techniques come from Algebraic Geometry, using Chern classes for enumerative computations.

Tensors with eigenvectors in a given subspace / Ottaviani G.; Shahidi Z.. - In: RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO. - ISSN 0009-725X. - STAMPA. - 71:(2021), pp. 73-84. [10.1007/s12215-021-00600-2]

Tensors with eigenvectors in a given subspace

Ottaviani G.;Shahidi Z.
2021

Abstract

The first author with B. Sturmfels studied in [16] the variety of matrices with eigenvectors in a given linear subspace, called the Kalman variety. We extend that study from matrices to symmetric tensors, proving in the tensor setting the irreducibility of the Kalman variety and computing its codimension and degree. Furthermore, we consider the Kalman variety of tensors having singular t-tuples with the first component in a given linear subspace and we prove analogous results, which are new even in the case of matrices. Main techniques come from Algebraic Geometry, using Chern classes for enumerative computations.
2021
71
73
84
Ottaviani G.; Shahidi Z.
File in questo prodotto:
File Dimensione Formato  
Ottaviani-Shahidi2022_Article_TensorsWithEigenvectorsInAGive.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1264876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
social impact