In recent years, the efficient numerical solution of Hamiltonian problems has led to the definition of a class of energy-conserving Runge–Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). Such methods admit an interesting interpretation in terms of continuous-stage Runge–Kutta methods. In this review paper, we recall this aspect and extend it to higher-order differential problems.

Continuous-Stage Runge–Kutta Approximation to Differential Problems / Pierluigi Amodio, Luigi Brugnano, Felice Iavernaro. - In: AXIOMS. - ISSN 2075-1680. - ELETTRONICO. - 11:(2022), pp. 192.1-192.17. [10.3390/axioms11050192]

Continuous-Stage Runge–Kutta Approximation to Differential Problems

Luigi Brugnano
;
2022

Abstract

In recent years, the efficient numerical solution of Hamiltonian problems has led to the definition of a class of energy-conserving Runge–Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). Such methods admit an interesting interpretation in terms of continuous-stage Runge–Kutta methods. In this review paper, we recall this aspect and extend it to higher-order differential problems.
2022
11
1
17
Pierluigi Amodio, Luigi Brugnano, Felice Iavernaro
File in questo prodotto:
File Dimensione Formato  
axioms-11(5) (2022) 192.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1265115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact