This paper addresses state estimation of linear systems with special attention on unknown process and measurement noise covariances, aiming to enhance estimation accuracy while ensuring stability. To this end, the full information estimation problem over a finite interval is first addressed. Then, a novel adaptive variational Bayesian (VB) moving horizon estimation (MHE) method is proposed, exploiting VB inference, MHE, and Monte Carlo integration with importance sampling for joint estimation of the unknown process and measurement noise covariances, along with the state trajectory over a moving window of fixed length. Further, it is proved that the proposed adaptive VB MHE filter ensures meansquare boundedness of the estimation error with any number of importance samples and VB iterations, as well as for any window length. Finally, simulation results on a target tracking example demonstrate the effectiveness of the VB MHE filter with enhanced estimation accuracy and convergence properties compared to the conventional non-adaptive Kalman filter and other existing adaptive filters.
A variational Bayes moving horizon estimation adaptive filter with guaranteed stability / Xiangxiang Dong, Giorgio Battistelli, Luigi Chisci, Yunze Cai. - In: AUTOMATICA. - ISSN 0005-1098. - STAMPA. - --:(In corso di stampa), pp. 1-12. [10.1016/j.automatica.2022.110374]
Titolo: | A variational Bayes moving horizon estimation adaptive filter with guaranteed stability | |
Autori di Ateneo: | ||
Autori: | Xiangxiang Dong; Giorgio Battistelli; Luigi Chisci; Yunze Cai | |
Anno di registrazione: | Being printed | |
Rivista: | ||
Volume: | -- | |
Pagina iniziale: | 1 | |
Pagina finale: | 12 | |
Abstract: | This paper addresses state estimation of linear systems with special attention on unknown process and measurement noise covariances, aiming to enhance estimation accuracy while ensuring stability. To this end, the full information estimation problem over a finite interval is first addressed. Then, a novel adaptive variational Bayesian (VB) moving horizon estimation (MHE) method is proposed, exploiting VB inference, MHE, and Monte Carlo integration with importance sampling for joint estimation of the unknown process and measurement noise covariances, along with the state trajectory over a moving window of fixed length. Further, it is proved that the proposed adaptive VB MHE filter ensures meansquare boundedness of the estimation error with any number of importance samples and VB iterations, as well as for any window length. Finally, simulation results on a target tracking example demonstrate the effectiveness of the VB MHE filter with enhanced estimation accuracy and convergence properties compared to the conventional non-adaptive Kalman filter and other existing adaptive filters. | |
Handle: | http://hdl.handle.net/2158/1274644 | |
Appare nelle tipologie: | 1a - Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Automatica-2022.pdf | Manuscript | Pdf editoriale (Version of record) | DRM non definito | Administrator Richiedi una copia |