Purpose – Among thoracic malformations, pectus deformities have the highest incidence and can result in a wide range of severe and mild clinical manifestations. Recently, the treatment of pectus deformities is shifting from traditional approaches toward customized solutions. This occurs by leveraging innovative rapid prototyping tools that allow for the design and fabrication of patient-specific treatments and medical devices. This paper aims to provide a comprehensive view of the growing literature in this area to analyze the progress made in this direction. Design/methodology/approach – The search was performed on major search engines through keywords inherent to reverse engineering (RE) and additive manufacturing (AM) technologies applied to pectus deformities and related treatments, selecting 54 papers. These were analyzed according to the addressed pathology, the hardware and software tools used and/or implemented and their integration within the clinical pathway. Findings – First, the analysis led to analyze and divide the papers according to how RE and AM technologies are applied for surgical and non-surgical treatments, pathological assessment and preoperative simulation and planning. Second, all papers were considered within the typical rapid prototyping framework consisting of the three phases of three-dimensional (3D) scanning, 3D modelling and 3D printing. Originality/value – To the best of the authors’ knowledge, to date, no survey has provided a comprehensive view of innovative and personalized treatment strategies for thoracic malformations; the present work fills this gap, allowing researchers in this field to have access to the most promising findings on the treatment and evaluation of pathology.

Assessment and treatment of pectus deformities: a review of reverse engineering and 3D printing techniques / Elisa Mussi, Michaela Servi, Flavio Facchini, Rocco Furferi, Yary Volpe. - In: RAPID PROTOTYPING JOURNAL. - ISSN 1355-2546. - ELETTRONICO. - (2022), pp. 1-14. [10.1108/RPJ-02-2022-0046]

Assessment and treatment of pectus deformities: a review of reverse engineering and 3D printing techniques

Elisa Mussi;Michaela Servi;Flavio Facchini;Rocco Furferi;Yary Volpe
2022

Abstract

Purpose – Among thoracic malformations, pectus deformities have the highest incidence and can result in a wide range of severe and mild clinical manifestations. Recently, the treatment of pectus deformities is shifting from traditional approaches toward customized solutions. This occurs by leveraging innovative rapid prototyping tools that allow for the design and fabrication of patient-specific treatments and medical devices. This paper aims to provide a comprehensive view of the growing literature in this area to analyze the progress made in this direction. Design/methodology/approach – The search was performed on major search engines through keywords inherent to reverse engineering (RE) and additive manufacturing (AM) technologies applied to pectus deformities and related treatments, selecting 54 papers. These were analyzed according to the addressed pathology, the hardware and software tools used and/or implemented and their integration within the clinical pathway. Findings – First, the analysis led to analyze and divide the papers according to how RE and AM technologies are applied for surgical and non-surgical treatments, pathological assessment and preoperative simulation and planning. Second, all papers were considered within the typical rapid prototyping framework consisting of the three phases of three-dimensional (3D) scanning, 3D modelling and 3D printing. Originality/value – To the best of the authors’ knowledge, to date, no survey has provided a comprehensive view of innovative and personalized treatment strategies for thoracic malformations; the present work fills this gap, allowing researchers in this field to have access to the most promising findings on the treatment and evaluation of pathology.
1
14
Elisa Mussi, Michaela Servi, Flavio Facchini, Rocco Furferi, Yary Volpe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1276680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact