Technology development has led to a large availability of increasingly precise remotely sensed data ready-to-use, but several countries’ forest monitoring programs are still based on the traditional systematic sampling design of National Forest Inventories (NFIs). It is well known that, in order to improve surveys estimates, auxiliary data can be used both in the design phase and in the estimation phase. Recent literature has presented some proposals of using remote sensing (RS) data to improve NFIs but all are limited to specific countries or areas. Our aim is to investigate how RS data can be exploited to produce global forest estimates in a more cost-efficiently way. We assess the use of a global Landsat-based cloud/noise free Best Available Pixel (BAP) composite image in the design phase in order to produce reliable estimates of the biomass and soil carbon density.

The use of remotely sensed data in sampling designs for forest monitoring / Chiara Bocci, Gherardo Chirici, Giovanni D’Amico, Saverio Francini, Emilia Rocco. - ELETTRONICO. - (2022), pp. 1601-1606. ((Intervento presentato al convegno SIS2022 - 51st Scientific Meeting of the Italian Statistical Society tenutosi a Caserta nel 22-24/06/2022.

The use of remotely sensed data in sampling designs for forest monitoring

Chiara Bocci
;
Gherardo Chirici;Giovanni D’Amico;Saverio Francini;Emilia Rocco
2022

Abstract

Technology development has led to a large availability of increasingly precise remotely sensed data ready-to-use, but several countries’ forest monitoring programs are still based on the traditional systematic sampling design of National Forest Inventories (NFIs). It is well known that, in order to improve surveys estimates, auxiliary data can be used both in the design phase and in the estimation phase. Recent literature has presented some proposals of using remote sensing (RS) data to improve NFIs but all are limited to specific countries or areas. Our aim is to investigate how RS data can be exploited to produce global forest estimates in a more cost-efficiently way. We assess the use of a global Landsat-based cloud/noise free Best Available Pixel (BAP) composite image in the design phase in order to produce reliable estimates of the biomass and soil carbon density.
SIS 2022 - Book of Short Papers
SIS2022 - 51st Scientific Meeting of the Italian Statistical Society
Caserta
22-24/06/2022
Chiara Bocci, Gherardo Chirici, Giovanni D’Amico, Saverio Francini, Emilia Rocco
File in questo prodotto:
File Dimensione Formato  
Bocci_Chirici_DAmico_Francini_Rocco_SIS2022.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 741.19 kB
Formato Adobe PDF
741.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1283326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact