To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982-2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero-to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero-one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one-four month lag positive correlation with precipitation, a low zero-two month lag negative correlation with temperature, and a high four-eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land-atmosphere interactions and vegetation feedbacks onto climate.
Ecosystem biophysical memory in the southwestern North America climate system / G Forzieri; E R Vivoni; L Feyen. - In: ENVIRONMENTAL RESEARCH LETTERS. - ISSN 1748-9326. - ELETTRONICO. - 8:(2013), pp. 0-0. [10.1088/1748-9326/8/4/044016]
Ecosystem biophysical memory in the southwestern North America climate system
G Forzieri
;
2013
Abstract
To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982-2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero-to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero-one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one-four month lag positive correlation with precipitation, a low zero-two month lag negative correlation with temperature, and a high four-eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land-atmosphere interactions and vegetation feedbacks onto climate.File | Dimensione | Formato | |
---|---|---|---|
2013a_Forzieri_et_al.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.