In this study, we investigated the cross-talk between mGlu1 and CB1 receptors in modulating GABA hippocampal output in whole-cell voltage clamp recordings in rat hippocampal acute slices, in organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD) and in gerbils subjected to global ischemia. CB1 receptor expression was studied using immunohistochemistry and the CA1 contents of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by LC-MS/MS. Our results show that mGlu1 receptor antagonists enhance sIPSCs in CA1 pyramidal cells and the basal and ischemic hippocampal release of GABA in vivo in a manner that is mediated by CB1 receptor activation. In hippocampal slices exposed to OGD and in ischemic gerbils, mGlu1 receptor antagonists protected CA1 pyramidal cells against post-ischemic injury and this effect was reduced by CB1 receptor activation. OGD induced a transient increase in the hippocampal content of AEA and this effect is prevented by mGlu1 receptor antagonist. Finally, OGD induced a late disruption of CB1 receptors in the CA1 region and the effect was prevented when CA1 pyramidal cells were protected by mGlu1 antagonists. Altogether, these results suggest a cooperative interaction between mGlu1 receptors and the endocannabinoid system in the mechanisms that lead to post-ischemic neuronal death.

The Neuroprotective Effects of mGlu1 Receptor Antagonists Are Mediated by an Enhancement of GABAergic Synaptic Transmission via a Presynaptic CB1 Receptor Mechanism / Landucci, Elisa; Berlinguer-Palmini, Rolando; Baccini, Gilda; Boscia, Francesca; Gerace, Elisabetta; Mannaioni, Guido; Pellegrini-Giampietro, Domenico E. - In: CELLS. - ISSN 2073-4409. - ELETTRONICO. - 11:(2022), pp. 3015-3015. [10.3390/cells11193015]

The Neuroprotective Effects of mGlu1 Receptor Antagonists Are Mediated by an Enhancement of GABAergic Synaptic Transmission via a Presynaptic CB1 Receptor Mechanism

Landucci, Elisa;Berlinguer-Palmini, Rolando;Baccini, Gilda;Gerace, Elisabetta;Mannaioni, Guido;Pellegrini-Giampietro, Domenico E
2022

Abstract

In this study, we investigated the cross-talk between mGlu1 and CB1 receptors in modulating GABA hippocampal output in whole-cell voltage clamp recordings in rat hippocampal acute slices, in organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD) and in gerbils subjected to global ischemia. CB1 receptor expression was studied using immunohistochemistry and the CA1 contents of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by LC-MS/MS. Our results show that mGlu1 receptor antagonists enhance sIPSCs in CA1 pyramidal cells and the basal and ischemic hippocampal release of GABA in vivo in a manner that is mediated by CB1 receptor activation. In hippocampal slices exposed to OGD and in ischemic gerbils, mGlu1 receptor antagonists protected CA1 pyramidal cells against post-ischemic injury and this effect was reduced by CB1 receptor activation. OGD induced a transient increase in the hippocampal content of AEA and this effect is prevented by mGlu1 receptor antagonist. Finally, OGD induced a late disruption of CB1 receptors in the CA1 region and the effect was prevented when CA1 pyramidal cells were protected by mGlu1 antagonists. Altogether, these results suggest a cooperative interaction between mGlu1 receptors and the endocannabinoid system in the mechanisms that lead to post-ischemic neuronal death.
2022
11
3015
3015
Landucci, Elisa; Berlinguer-Palmini, Rolando; Baccini, Gilda; Boscia, Francesca; Gerace, Elisabetta; Mannaioni, Guido; Pellegrini-Giampietro, Domenico E
File in questo prodotto:
File Dimensione Formato  
2022 Cells Landucci.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1284563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact