Background and Objective:In biomedical fields, image analysis is often necessary for an accurate diagnosis. In order to obtain all the information needed to form an in-depth clinical picture, it may be useful to combine the contents of images taken under different diagnostic modes. Multimodal medical image fusion techniques enable complementary information acquired by different imaging devices to be automatically combined into a unique image. Methods:In this paper, multimodal medical images fusion method based on multiresolution analysis (MRA) is proposed, with the aim to combine the high geometric content of magnetic resonance imaging (MRI) and the elasticity information of magnetic resonance elastography (MRE), simultaneously acquired on the same organs of a patient. First, the slices of MRE are volumetrically interpolated to exactly overlap, each with a slice of MRI. Then, the spatial details of MRI are extracted by means of MRA and injected into the corresponding slices of MRE. Due to the intrinsic dissimilarity between corresponding slices of MRE and MRI, the spatial details of MRI are modulated by local or global matching functions. Results:The performance of the proposed method is quantitatively assessed considering radiometric and geometric consistency of the fused images with respect to their originals, in a comparison with two popular methods from the literature. For a qualitative evaluation, a visual inspection is carried out. Conclusions:The results show that the proposed method enables an effective MRI-MRE fusion that allows the elasticity information and geometric details of the examined organs to be evaluated in a single image.

Multimodal fusion of tomographic sequences of medical images: MRE spatially enhanced by MRI / Santarelli C.; Carfagni M.; Alparone L.; Arienzo A.; Argenti F.. - In: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE. - ISSN 0169-2607. - ELETTRONICO. - 223:(2022), pp. 106964.0-106964.0. [10.1016/j.cmpb.2022.106964]

Multimodal fusion of tomographic sequences of medical images: MRE spatially enhanced by MRI

Santarelli C.
;
Carfagni M.;Alparone L.;Arienzo A.;Argenti F.
2022

Abstract

Background and Objective:In biomedical fields, image analysis is often necessary for an accurate diagnosis. In order to obtain all the information needed to form an in-depth clinical picture, it may be useful to combine the contents of images taken under different diagnostic modes. Multimodal medical image fusion techniques enable complementary information acquired by different imaging devices to be automatically combined into a unique image. Methods:In this paper, multimodal medical images fusion method based on multiresolution analysis (MRA) is proposed, with the aim to combine the high geometric content of magnetic resonance imaging (MRI) and the elasticity information of magnetic resonance elastography (MRE), simultaneously acquired on the same organs of a patient. First, the slices of MRE are volumetrically interpolated to exactly overlap, each with a slice of MRI. Then, the spatial details of MRI are extracted by means of MRA and injected into the corresponding slices of MRE. Due to the intrinsic dissimilarity between corresponding slices of MRE and MRI, the spatial details of MRI are modulated by local or global matching functions. Results:The performance of the proposed method is quantitatively assessed considering radiometric and geometric consistency of the fused images with respect to their originals, in a comparison with two popular methods from the literature. For a qualitative evaluation, a visual inspection is carried out. Conclusions:The results show that the proposed method enables an effective MRI-MRE fusion that allows the elasticity information and geometric details of the examined organs to be evaluated in a single image.
223
0
0
Santarelli C.; Carfagni M.; Alparone L.; Arienzo A.; Argenti F.
File in questo prodotto:
File Dimensione Formato  
2022_CMPB.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1286075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact