Given any non-compact real simple Lie group G_o of inner type and even dimension, we prove the existence of an invariant complex structure J and a Hermitian balanced metric on G_o and on any compact quotient M= Gamma/G_o, with Gamma a cocompact lattice. We also prove that (M,J) does not carry any pluriclosed metric, in contrast to the case of even dimensional compact Lie groups, which admit pluriclosed but not balanced metrics.
Real semisimple Lie groups and balanced metrics / Fabio Podesta' ; Federico Giusti. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - 39:(2023), pp. 711-729. [10.4171/RMI/1391]
Real semisimple Lie groups and balanced metrics
Fabio Podesta'
;
2023
Abstract
Given any non-compact real simple Lie group G_o of inner type and even dimension, we prove the existence of an invariant complex structure J and a Hermitian balanced metric on G_o and on any compact quotient M= Gamma/G_o, with Gamma a cocompact lattice. We also prove that (M,J) does not carry any pluriclosed metric, in contrast to the case of even dimensional compact Lie groups, which admit pluriclosed but not balanced metrics.File | Dimensione | Formato | |
---|---|---|---|
2106.14557.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
212.2 kB
Formato
Adobe PDF
|
212.2 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.