Given any non-compact real simple Lie group G_o of inner type and even dimension, we prove the existence of an invariant complex structure J and a Hermitian balanced metric on G_o and on any compact quotient M= Gamma/G_o, with Gamma a cocompact lattice. We also prove that (M,J) does not carry any pluriclosed metric, in contrast to the case of even dimensional compact Lie groups, which admit pluriclosed but not balanced metrics.

Real semisimple Lie groups and balanced metrics / Fabio Podesta' ; Federico Giusti. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - STAMPA. - ---:(In corso di stampa), pp. 00-00. [10.4171/RMI/1391]

Real semisimple Lie groups and balanced metrics

Fabio Podesta'
;
In corso di stampa

Abstract

Given any non-compact real simple Lie group G_o of inner type and even dimension, we prove the existence of an invariant complex structure J and a Hermitian balanced metric on G_o and on any compact quotient M= Gamma/G_o, with Gamma a cocompact lattice. We also prove that (M,J) does not carry any pluriclosed metric, in contrast to the case of even dimensional compact Lie groups, which admit pluriclosed but not balanced metrics.
---
00
00
Fabio Podesta' ; Federico Giusti
File in questo prodotto:
File Dimensione Formato  
2106.14557.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: DRM non definito
Dimensione 212.2 kB
Formato Adobe PDF
212.2 kB Adobe PDF Visualizza/Apri

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/1287867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact