There is an urgent need for new chemotherapic agents to treat human fungal infections due to emerging and spreading globally resistance mechanisms. Among the new targets that have been recently investigated for the development of antifungal drugs there are the metallo-enzymes Carbonic Anhydrases (CAs, EC 4.2.1.1). The inhibition of the β-CAs identified in many pathogenic fungi leads to an impairment of parasite growth and virulence, which in turn leads to a significant anti-infective effect. Based on antifungal nucleoside antibiotics, the inhibition of the β-CAs from the resistance-showing fungi Candida glabrata (CgNce103), Cryptococcus neoformans (Can2) and Malasszia globosa (MgCA) with a series of benzenesulfonamides bearing nitrogenous bases, such as uracil and adenine, is here reported. Many such compounds display low nanomolar (<100 nM) inhibitory potency against Can2 and CgNce103, whereas the activity of MgCA is considerably less affected (inhibition constants in the range 138.8-5601.5 nM). The β-CAs inhibitory data were compared with those against α-class human ubiquitous isoforms. Interesting selective inhibitory activities for the target fungal CAs over hCA I and II were reported, which make nitrogenous base benzenesulfonamides interesting tools and leads for further investigations in search of new antifungal with innovative mechanisms of action.
Benzenesulfonamides incorporating nitrogenous bases show effective inhibition of β-carbonic anhydrases from the pathogenic fungi Cryptococcus neoformans, Candida glabrata and Malassezia globosa / Bua, Silvia; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Nocentini, Alessio. - In: BIOORGANIC CHEMISTRY. - ISSN 0045-2068. - ELETTRONICO. - 86:(2019), pp. 39-43. [10.1016/j.bioorg.2019.01.030]
Benzenesulfonamides incorporating nitrogenous bases show effective inhibition of β-carbonic anhydrases from the pathogenic fungi Cryptococcus neoformans, Candida glabrata and Malassezia globosa
Bua, Silvia;Supuran, Claudiu T;Nocentini, Alessio
2019
Abstract
There is an urgent need for new chemotherapic agents to treat human fungal infections due to emerging and spreading globally resistance mechanisms. Among the new targets that have been recently investigated for the development of antifungal drugs there are the metallo-enzymes Carbonic Anhydrases (CAs, EC 4.2.1.1). The inhibition of the β-CAs identified in many pathogenic fungi leads to an impairment of parasite growth and virulence, which in turn leads to a significant anti-infective effect. Based on antifungal nucleoside antibiotics, the inhibition of the β-CAs from the resistance-showing fungi Candida glabrata (CgNce103), Cryptococcus neoformans (Can2) and Malasszia globosa (MgCA) with a series of benzenesulfonamides bearing nitrogenous bases, such as uracil and adenine, is here reported. Many such compounds display low nanomolar (<100 nM) inhibitory potency against Can2 and CgNce103, whereas the activity of MgCA is considerably less affected (inhibition constants in the range 138.8-5601.5 nM). The β-CAs inhibitory data were compared with those against α-class human ubiquitous isoforms. Interesting selective inhibitory activities for the target fungal CAs over hCA I and II were reported, which make nitrogenous base benzenesulfonamides interesting tools and leads for further investigations in search of new antifungal with innovative mechanisms of action.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.