Robotic-assisted medial unicompartmental knee arthroplasty (mUKA) has been introduced to improve accuracy in implant positioning and limb alignment, overcoming the reported high failure rates of conventional UKA. Indeed, mUKA is a technically challenging procedure strongly related to surgeons' skills and expertise. The purpose of this study was to evaluate the likelihood of robotic-assisted surgery in reducing the variability of coronal and sagittal component positioning between high- and low-volume surgeons. We evaluated a prospective cohort of 161 robotic mUKA implanted between May 2018 and December 2019 at two high-volume robotic centers. Patients were divided into two groups: patients operated by "high-volume" (group A) or "low-volume" (group B) surgeons. We recorded intraoperative lower-limb alignment, component positioning, and surgical timing. Postoperatively, every patient underwent a radiographical protocol to assess coronal and sagittal femoral/tibial component alignment. Range of motion and other clinical outcomes were assessed pre- and 12 months postoperatively by using oxford knee score, forgotten joint score, and visual analog scale. Of 161 recruited knees, 149 (A: 101; B: 48) were available for radiographic analysis at 1 month, and clinical evaluation at 12 months. No clinical difference neither difference in mechanical alignment nor coronal/sagittal component positioning were found ( p >0.05). A significant difference was recorded in surgical timing (A: 57minutes; B: 86minutes; p <0.05). No superficial or deep infections or other major complications have been developed during the follow-up. Robotics surgery in mUKA confirmed its value in improving the reproducibility of such technical procedure, with satisfactory clinical outcomes. Moreover, it almost eliminates any possible differences in component positioning, and lower limb alignment among low-and high- volume knee surgeons.

Robotic-Assisted Unicompartmental Knee Arthroplasty Reduces Components' Positioning Differences among High- and Low-Volume Surgeons / Matassi, Fabrizio; Innocenti, Matteo; Giabbani, Niccolò; Sani, Giacomo; Cozzi Lepri, Andrea; Piolanti, Nicola; Civinini, Roberto. - In: THE JOURNAL OF KNEE SURGERY. - ISSN 1538-8506. - ELETTRONICO. - 35:(2022), pp. 1549-1555. [10.1055/s-0041-1727115]

Robotic-Assisted Unicompartmental Knee Arthroplasty Reduces Components' Positioning Differences among High- and Low-Volume Surgeons

Matassi, Fabrizio;Innocenti, Matteo
;
Sani, Giacomo;Cozzi Lepri, Andrea;Civinini, Roberto
2022

Abstract

Robotic-assisted medial unicompartmental knee arthroplasty (mUKA) has been introduced to improve accuracy in implant positioning and limb alignment, overcoming the reported high failure rates of conventional UKA. Indeed, mUKA is a technically challenging procedure strongly related to surgeons' skills and expertise. The purpose of this study was to evaluate the likelihood of robotic-assisted surgery in reducing the variability of coronal and sagittal component positioning between high- and low-volume surgeons. We evaluated a prospective cohort of 161 robotic mUKA implanted between May 2018 and December 2019 at two high-volume robotic centers. Patients were divided into two groups: patients operated by "high-volume" (group A) or "low-volume" (group B) surgeons. We recorded intraoperative lower-limb alignment, component positioning, and surgical timing. Postoperatively, every patient underwent a radiographical protocol to assess coronal and sagittal femoral/tibial component alignment. Range of motion and other clinical outcomes were assessed pre- and 12 months postoperatively by using oxford knee score, forgotten joint score, and visual analog scale. Of 161 recruited knees, 149 (A: 101; B: 48) were available for radiographic analysis at 1 month, and clinical evaluation at 12 months. No clinical difference neither difference in mechanical alignment nor coronal/sagittal component positioning were found ( p >0.05). A significant difference was recorded in surgical timing (A: 57minutes; B: 86minutes; p <0.05). No superficial or deep infections or other major complications have been developed during the follow-up. Robotics surgery in mUKA confirmed its value in improving the reproducibility of such technical procedure, with satisfactory clinical outcomes. Moreover, it almost eliminates any possible differences in component positioning, and lower limb alignment among low-and high- volume knee surgeons.
2022
35
1549
1555
Matassi, Fabrizio; Innocenti, Matteo; Giabbani, Niccolò; Sani, Giacomo; Cozzi Lepri, Andrea; Piolanti, Nicola; Civinini, Roberto
File in questo prodotto:
File Dimensione Formato  
JKS_200662oa.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1299786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact