Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of β-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.

Effect of culture conditions at lab- scale on metabolite composition and antibacterial and antibiofilm activities of Dunaliella tertiolecta / María José Iglesias, Raquel Soengas, Fernando López-Ortiz, Natascia Biondi, Mario R. Tredici, Ignacio Gutiérrez-del-Río, Sara López-Ibáñez, Claudio J. Villar, Felipe Lombó, Yuly López, Yaiza Gabasa, Sara Soto. - In: JOURNAL OF PHYCOLOGY. - ISSN 0022-3646. - STAMPA. - 59:(2023), pp. 356-369. [10.1111/jpy.13316]

Effect of culture conditions at lab- scale on metabolite composition and antibacterial and antibiofilm activities of Dunaliella tertiolecta

Natascia Biondi;Mario R. Tredici;
2023

Abstract

Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of β-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.
2023
59
356
369
Goal 3: Good health and well-being
María José Iglesias, Raquel Soengas, Fernando López-Ortiz, Natascia Biondi, Mario R. Tredici, Ignacio Gutiérrez-del-Río, Sara López-Ibáñez, Claudio J....espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1301486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact