A novel series of 32 sulfonamide containing quinolines (5a-j, 7a-k and 9a-k) were synthesized using tail approach and assayed for their carbonic anhydrase inhibitory potency against four human (h) carbonic anhydrase (CA) isoforms hCA I, II, IX and XII. Most of these newly synthesized compounds exhibited interesting inhibition potency against hCA I, II, IX and XII, in the nanomolar range with some derivatives being more potent than the standard drug acetazolamide (AAZ). The most effective ones on hCA I were 9b (91.8 nM), on hCA II: 5b (7.1 nM), 9c (9.6 nM) and on hCA IX: 5b (6.5 nM), 5g (21.4 nM), 5i (9.1 nM), 9a (22.8 nM), 9b (9.7 nM). Compounds 5h (8.8 nM), 7a (9.6 nM), 9d (6.9 nM), 9e (6.7 nM) were found highly effective against hCA XII. These 4-functionalized benzenesulfonamides (5a-5j, 9a-9k) were found to be more potent than the corresponding 3-functionalized derivatives (7a-k). These compounds may emerge as potential leads for the development of isoform selective hCA IX and XII inhibitors.

Exploration of 2-phenylquinoline-4-carboxamide linked benzene sulfonamide derivatives as isoform selective inhibitors of transmembrane human carbonic anhydrases / Swain B.; Sahoo S.K.; Singh P.; Angeli A.; Yaddanapudi V.M.; Supuran C.T.; Arifuddin M.. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - ELETTRONICO. - 234:(2022), pp. 114247.114247-114247.114247. [10.1016/j.ejmech.2022.114247]

Exploration of 2-phenylquinoline-4-carboxamide linked benzene sulfonamide derivatives as isoform selective inhibitors of transmembrane human carbonic anhydrases

Singh P.;Angeli A.;Supuran C. T.;
2022

Abstract

A novel series of 32 sulfonamide containing quinolines (5a-j, 7a-k and 9a-k) were synthesized using tail approach and assayed for their carbonic anhydrase inhibitory potency against four human (h) carbonic anhydrase (CA) isoforms hCA I, II, IX and XII. Most of these newly synthesized compounds exhibited interesting inhibition potency against hCA I, II, IX and XII, in the nanomolar range with some derivatives being more potent than the standard drug acetazolamide (AAZ). The most effective ones on hCA I were 9b (91.8 nM), on hCA II: 5b (7.1 nM), 9c (9.6 nM) and on hCA IX: 5b (6.5 nM), 5g (21.4 nM), 5i (9.1 nM), 9a (22.8 nM), 9b (9.7 nM). Compounds 5h (8.8 nM), 7a (9.6 nM), 9d (6.9 nM), 9e (6.7 nM) were found highly effective against hCA XII. These 4-functionalized benzenesulfonamides (5a-5j, 9a-9k) were found to be more potent than the corresponding 3-functionalized derivatives (7a-k). These compounds may emerge as potential leads for the development of isoform selective hCA IX and XII inhibitors.
2022
234
114247
114247
Swain B.; Sahoo S.K.; Singh P.; Angeli A.; Yaddanapudi V.M.; Supuran C.T.; Arifuddin M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1305549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact