A series of novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides was synthesized and examined as inhibitors of cytosolic (human) hCA I and hCA II, and cancer-related transmembrane hCA IX and hCA XII isoenzymes. AC2 was the most selective inhibitor towards cancer-related hCA IX while AC8 and AC9 selectively inhibited hCA XII over off-target isoenzymes. Anticancer effects of the compounds were evaluated towards human oral squamous cell carcinoma (OSCC) cell lines, human mesenchymal normal oral cells, breast (MCF7), prostate (PC3), non-small cell lung carcinoma cells (A549), and non-tumoral fetal lung fibroblast cells (MRC5). Compounds moderately showed cytotoxicity towards cancer cell lines. Among others, AC6 showed cell-specific cytotoxic activity and induced apoptosis in a dose-dependent manner without a significant change in the cell cycle distribution of MCF7. These results suggest that pyrazole-3-carboxamides need further molecular modification to increase their anticancer drug candidate potency.
Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides / Yamali C.; Inci Gul H.; Ozli G.; Angeli A.; Ballar Kirmizibayrak P.; Erbaykent Tepedelen B.; Sakagami H.; Bua S.; Supuran C.T.. - In: BIOORGANIC CHEMISTRY. - ISSN 0045-2068. - ELETTRONICO. - 115:(2021), pp. 105194.105194-105194.105194. [10.1016/j.bioorg.2021.105194]
Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides
Angeli A.;Bua S.;Supuran C. T.
2021
Abstract
A series of novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides was synthesized and examined as inhibitors of cytosolic (human) hCA I and hCA II, and cancer-related transmembrane hCA IX and hCA XII isoenzymes. AC2 was the most selective inhibitor towards cancer-related hCA IX while AC8 and AC9 selectively inhibited hCA XII over off-target isoenzymes. Anticancer effects of the compounds were evaluated towards human oral squamous cell carcinoma (OSCC) cell lines, human mesenchymal normal oral cells, breast (MCF7), prostate (PC3), non-small cell lung carcinoma cells (A549), and non-tumoral fetal lung fibroblast cells (MRC5). Compounds moderately showed cytotoxicity towards cancer cell lines. Among others, AC6 showed cell-specific cytotoxic activity and induced apoptosis in a dose-dependent manner without a significant change in the cell cycle distribution of MCF7. These results suggest that pyrazole-3-carboxamides need further molecular modification to increase their anticancer drug candidate potency.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



