A library of twenty-two arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide moieties have been synthesized by utilizing tail-approach and characterized by their IR, 1H NMR, 13C NMR, HRMS and single crystal studies. Further, these newly synthesized compounds were screened in-vitro for their inhibition efficacy against physiologically relevant hCA I, II, IV and IX isoforms. Inhibition data revealed that, in broader sense, sulfanilamide analogues (4a-4k) were comparatively better inhibitors of cytosolic hCA I and II isoforms than metanilamide analogues (5a-5k), whereas exactly opposite trend was observed in case of inhibition of membrane bound hCA IV and transmembrane hCA IX. For hCA I, more than half of the synthesized compounds were found to be moderate inhibitors and three compounds 4b, 5b and 5e (Ki of 40.6, 224.7 and 74.4 nM, respectively) appeared as better inhibitors than reference drug AAZ (Ki = 250 nM). hCA II was potently inhibited by 4e-4g and 5e with Ki of 18.1, 14.1, 14.9 and 17.8 nM, respectively. Interestingly, 4e-4g selectively inhibited hCA II with selectivity of > 15-fold over hCA I, IV and IX isoforms. All the compounds presented moderate to weak inhibition profiles against glaucoma associated hCA IV with Ki of 88 nM-8.87 μM and except 4f, 5k, significant inhibition profiles against tumor associated hCA IX isoform with Ki spanning in range of 0.113 μM-0.318 μM. Moreover, 5e was the only compound among the whole series which effectively inhibited all the tested isoforms.

Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors / Kumar A.; Siwach K.; Rom T.; Kumar R.; Angeli A.; Kumar Paul A.; Supuran C.T.; Sharma P.K.. - In: BIOORGANIC CHEMISTRY. - ISSN 0045-2068. - ELETTRONICO. - 123:(2022), pp. 105764.105764-105764.105764. [10.1016/j.bioorg.2022.105764]

Tail-approach based design and synthesis of Arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide as human carbonic anhydrase I, II, IV and IX inhibitors

Angeli A.;Supuran C. T.;
2022

Abstract

A library of twenty-two arylthiazolylhydrazono-1,2,3-triazoles incorporating sulfanilamide and metanilamide moieties have been synthesized by utilizing tail-approach and characterized by their IR, 1H NMR, 13C NMR, HRMS and single crystal studies. Further, these newly synthesized compounds were screened in-vitro for their inhibition efficacy against physiologically relevant hCA I, II, IV and IX isoforms. Inhibition data revealed that, in broader sense, sulfanilamide analogues (4a-4k) were comparatively better inhibitors of cytosolic hCA I and II isoforms than metanilamide analogues (5a-5k), whereas exactly opposite trend was observed in case of inhibition of membrane bound hCA IV and transmembrane hCA IX. For hCA I, more than half of the synthesized compounds were found to be moderate inhibitors and three compounds 4b, 5b and 5e (Ki of 40.6, 224.7 and 74.4 nM, respectively) appeared as better inhibitors than reference drug AAZ (Ki = 250 nM). hCA II was potently inhibited by 4e-4g and 5e with Ki of 18.1, 14.1, 14.9 and 17.8 nM, respectively. Interestingly, 4e-4g selectively inhibited hCA II with selectivity of > 15-fold over hCA I, IV and IX isoforms. All the compounds presented moderate to weak inhibition profiles against glaucoma associated hCA IV with Ki of 88 nM-8.87 μM and except 4f, 5k, significant inhibition profiles against tumor associated hCA IX isoform with Ki spanning in range of 0.113 μM-0.318 μM. Moreover, 5e was the only compound among the whole series which effectively inhibited all the tested isoforms.
2022
123
105764
105764
Kumar A.; Siwach K.; Rom T.; Kumar R.; Angeli A.; Kumar Paul A.; Supuran C.T.; Sharma P.K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1305640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact