A necessary and sufficient condition for fractional Orlicz-Sobolev spaces to be continuously embedded into $L^\infty(\rn)$ is exhibited. Under the same assumption, any function from the relevant fractional-order spaces is shown to be continuous. Improvements to this result are also offered. They provide the optimal Orlicz target space, and the optimal rearrangement-invariant target space in the embedding in question. These results complement those already available in the subcritical case, where the embedding into $L^\infty(\rn)$ fails. They also augment a classical embedding theorem for standard fractional Sobolev spaces.

Boundedness of functions in fractional Orlicz–Sobolev spaces / Alberico A.; Cianchi A.; Pick L.; Slavikova L.. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 230:(2023), pp. 0-0. [10.1016/j.na.2023.113231]

Boundedness of functions in fractional Orlicz–Sobolev spaces

Cianchi A.
;
2023

Abstract

A necessary and sufficient condition for fractional Orlicz-Sobolev spaces to be continuously embedded into $L^\infty(\rn)$ is exhibited. Under the same assumption, any function from the relevant fractional-order spaces is shown to be continuous. Improvements to this result are also offered. They provide the optimal Orlicz target space, and the optimal rearrangement-invariant target space in the embedding in question. These results complement those already available in the subcritical case, where the embedding into $L^\infty(\rn)$ fails. They also augment a classical embedding theorem for standard fractional Sobolev spaces.
2023
230
0
0
Alberico A.; Cianchi A.; Pick L.; Slavikova L.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X23000238-main.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Creative commons
Dimensione 802.99 kB
Formato Adobe PDF
802.99 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1305763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact