The mitochondrial isoforms VA/VB of metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are involved in metabolic processes, such as de novo lipogenesis and fatty acid biosynthesis. We review the drug design landscape for obtaining CA VA/VB-selective/effective inhibitors, starting from the clinical observations that CA inhibitory drugs, such as the antiepileptics topiramate and zonisamide, or the diuretic acetazolamide induce a significant weight loss. The main approaches for designing such compounds consisted in drug repurposing of already known CA inhibitors (CAIs); screening of synthetic/natural products libraries both in the classical and virtual modes, and de novo drug design using the tail approach. A number of such studies allowed the identification of lead compounds diverse from sulphonamides, such as tropolones, phenols, polyphenols, flavones, glycosides, fludarabine, lenvatinib, rufinamide, etc., for which the binding mode to the enzyme is not always well understood. Classical drug design studies of sulphonamides, sulfamates and sulfamides afforded low nanomolar mitochondrial CA-selective inhibitors, but detailed antiobesity studies were poorly performed with most of them. A breakthrough in the field may be constituted by the design of hybrids incorporating CAIs and other antiobesity chemotypes.

Anti-obesity carbonic anhydrase inhibitors: challenges and opportunities / Supuran, Claudiu T. - In: JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY. - ISSN 1475-6366. - ELETTRONICO. - 37:(2022), pp. 0-0. [10.1080/14756366.2022.2121393]

Anti-obesity carbonic anhydrase inhibitors: challenges and opportunities

Supuran, Claudiu T
2022

Abstract

The mitochondrial isoforms VA/VB of metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are involved in metabolic processes, such as de novo lipogenesis and fatty acid biosynthesis. We review the drug design landscape for obtaining CA VA/VB-selective/effective inhibitors, starting from the clinical observations that CA inhibitory drugs, such as the antiepileptics topiramate and zonisamide, or the diuretic acetazolamide induce a significant weight loss. The main approaches for designing such compounds consisted in drug repurposing of already known CA inhibitors (CAIs); screening of synthetic/natural products libraries both in the classical and virtual modes, and de novo drug design using the tail approach. A number of such studies allowed the identification of lead compounds diverse from sulphonamides, such as tropolones, phenols, polyphenols, flavones, glycosides, fludarabine, lenvatinib, rufinamide, etc., for which the binding mode to the enzyme is not always well understood. Classical drug design studies of sulphonamides, sulfamates and sulfamides afforded low nanomolar mitochondrial CA-selective inhibitors, but detailed antiobesity studies were poorly performed with most of them. A breakthrough in the field may be constituted by the design of hybrids incorporating CAIs and other antiobesity chemotypes.
2022
37
0
0
Supuran, Claudiu T
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1306100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact