Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-a-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.

Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K+ Channels / Hasan, Sonia; Delicata, Francis; Guasti, Leonardo; Duranti, Claudia; Haidar, Fatemah Mousalem; Arcangeli, Annarosa; Imbrici, Paola; Pessia, Mauro; Valentino, Mario; D'Adamo, Maria Cristina. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - ELETTRONICO. - 23:(2022), pp. 1-12. [10.3390/ijms232315334]

Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K+ Channels

Duranti, Claudia;Arcangeli, Annarosa;
2022

Abstract

Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-a-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.
2022
23
1
12
Goal 3: Good health and well-being
Hasan, Sonia; Delicata, Francis; Guasti, Leonardo; Duranti, Claudia; Haidar, Fatemah Mousalem; Arcangeli, Annarosa; Imbrici, Paola; Pessia, Mauro; Valentino, Mario; D'Adamo, Maria Cristina
File in questo prodotto:
File Dimensione Formato  
ijms-23-15334.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1308565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact